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A B S T R A C T

Nosema ceranae is now considered to be an emerging infectious disease of the European honey bee Apis mellifera.
Only one antibiotic, Fumagillin, is commercially available to combat Nosema infections. This antibiotic treat-
ment is banned from use in Europe and elsewhere there is a high probability for antibiotic resistance to develop.
We are therefore interested in investigating the effects of a natural propolis extract on its ability to reduce N.
ceranae infection loads in the dwarf honey bee, Apis florea, a native honey bee with a range that overlaps with
Apis cerana and Apis mellifera that is at risk of infection. Experimentally infected caged bees were fed a treatment
consisting of 0%, 50%, or 70% propolis extract. All 50% and 70% propolis treated bees had significantly lower
infection loads, and the 50% treated bees had higher survival in comparison to untreated bees. In addition,
propolis treated bees had significantly higher haemolymph trehalose levels and hypopharyngeal gland protein
content similar to levels of uninfected bees. Propolis ethanolic extract treatment could therefore be considered as
a possible viable alternative to Fumagillin to improve bee health. This natural treatment deserves further ex-
ploration to develop it as a possible alternative to combat N. ceranae infections distributed around the world.

Introduction

Nosemosis, is a disease caused when honey bees are infected with
Nosema ceranae or Nosema apis, and it is now currently distributed
around the world (Higes et al., 2013; Paxton et al., 2007; Williams
et al., 2008a; Suwannapong et al., 2011a; Fries, 2010). Nosemosis is
also implicated as one of the possible factors responsible for the recent
decline in honey bee health (Higes et al., 2013; Higes et al., 2010a;
Higes et al., 2008). N. ceranae is much more prevlanant and is suspected
to be replacing N. apis throughout the world. In the European honey
bee Apis mellifera, N. apis appears to have a competitive disadvantage
when co-infected with the relatively new N. ceranae (Natsopoulou
et al., 2015; Williams et al., 2014). The widespread invasive nature of
N. ceranae is concerning because it is suspected to be a larger threat to
sustaining honey bee health than previously thought. Apis florea can
potentially get a N. ceranae infection from shared flower use of con-
taminated flowers or other food sources because it has foraging areas
that overlap with Apis cerana and Apis mellifera. For this reason, there is
potential for N. ceranae to jump from its original host, A. cerana, to
other bee species like it has done with A. mellifera. If this is the case

there is potential for the lowering of bee health of A. florea due to in-
creased virulence in this new host like what has been found with A.
mellifera (Higes et al., 2013; Suwannapong et al., 2011a; Higes et al.,
2010b; Botías et al., 2013).

Maintaining honey bee health is critical to sustaining current food
production practices. Honey bees provide important ecosystem and
agricultural services as pollinators, and thus maintaining honey bee
health is paramount to aid high agricultural output in order to meet the
growing demand of food consumption (Breeze et al., 2014; Brittain
et al., 2013; Breeze et al., 2011; Potts et al., 2010; Klein et al., 2007). A.
florea in particular is valuable for local economic development in
Thailand because this species of honey bee is the primary pollinator of
many crops and wild plants (Suwannapong et al., 2011b). Although
Nosema infected bees do not exhibit obvious external disease symptoms,
they can have digestive disorders resulting in malnutrition, reduced
hypopharyngeal glands, and shortened life spans (Goblirsch et al.,
2013; Woyciechowski and Lomnicki, 1995; Woyciechowski and
Kozlowski, 1998; Wang and Moeller, 1971; Wang and Moeller, 1969).
In general, malnutrition and energetic stress have emerged to be one of
the main pathological effects from a N. ceranae infection in Apis
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mellifera (Dussaubat et al., 2012; Vidau et al., 2014; Mayack and Naug,
2009; Naug and Gibbs, 2009; Alaux et al., 2010). Furthermore, hives
with Nosemosis demonstrate lower honey yields and depopulation of
worker bees (Fries et al., 1984; White, 1919). One of the possible me-
chanisms suggested for the depopulation of hives is due to forager en-
ergetic stress (Mayack and Naug, 2010; Mayack and Naug, 2013; Wolf
et al., 2014), as infected bees have lower haemolymph trehalose, which
is the sugar used to power flight when foraging out away from the hive
(Thompson, 2003; Blatt and Roces, 2001). Accompanying this reduc-
tion in trehalose is an increase in bee mortality (Mayack and Naug,
2009; Mayack and Naug, 2013; Martín-Hernández et al., 2011). The
pathological effects of Nosema do not cause immediate death, but still
can reduce pollination effectiveness and increase the likelihood of a
colony collapsing (Higes et al., 2008; Wolf et al., 2014; Naug, 2014).
Thus, there is a need for effective treatment control measures in order
to combat Nosema infections on a regular basis.

The antibiotic Fumagillin was the first cost effective treatment
identified for combating N. apis infections (Goodman et al., 1990;
Moffett et al., 1969). However, Fumagillin is only effective at killing the
vegetative stage of the N. apis life cycle, and mature spores are resistant
to Fumagillin treatment (Katznelson and Jamieson, 1952; Liu, 1973).
Furthermore, Fumagillin has been shown to be only temporarily ef-
fective at reducing N. ceranae parasite burdens in honey bee colonies
(Williams et al., 2008b) and is banned from use in Europe (Higes et al.,
2014). This is a pressing concern because the spread of N. ceranae is on
the rise and this pathogen is also potentially more virulent than N. apis
(Paxton et al., 2007; Williams et al., 2014; Martín-Hernández et al.,
2011). Therefore, the use of Fumagillin, despite its limited effectiveness
against N. ceranae, will continue to increase and consequently there is a
high probability for Fumagillin resistance to develop rapidly in N.
ceranae.

In response to this, other antibiotics, including sulpha drugs have
been tested for the control of N. ceranae with limited success (Roussel
et al., 2015). There are additional drawbacks to the use of antibiotics,
including sulpha drugs as well, as they pose potential health risks for
humans when consuming contaminated honey. Increased exposure to
these antibiotics and their residues are likely to confer increased bac-
terial antibiotic resistance to human diseases such as tuberculosis
(Kochansky et al., 2001). Indeed, recently it has been shown that Fu-
magillin and its counterpart dicyclohexylamine, which are both highly
toxic to mammals, does not completely degrade in contaminated honey
held under typical hive conditions, even after one year (van den Heever
et al., 2015). Therefore, it has been realized that a natural product and
perhaps a less toxic one to humans that kills Nosema, is desirable
(Maistrello et al., 2008).

Given that Nosema lives primarily in the gut, a number of natural
treatments have been developed and tested that are administered orally
by mixing the substance in sugar syrup that is bulk fed to bees. One
treatment, Nozevit works by keeping the midgut pH low and thereby
prevents the midgut from becoming rigid that is detrimental for ab-
sorption of nutrients (Higes et al., 2014). In the same vein, prebiotics
and probiotics have been investigated to maintain this low pH required
to determine if it reduces the parasite burden in the midgut, but actu-
ally an increase in Nosema loads have been observed (Ptaszynska et al.,
2016), these increases however can be negated with Fumagillin treat-
ment (Maggi et al., 2013). On the other hand, natural products such as
Zeolite and BeeCleanse significantly reduce Nosema loads, but the
magnitude of the effect was marginal, with millions of spores remaining
in bees after many days of treatment (Gajger et al., 2013; Gajger et al.,
2015). Essential oils and other plant extracts have been found to have a
more dramatic and targeted effect at reducing Nosema loads and ex-
tending the life-span of infected bees, providing evidence for exploring
treatments along these lines to be more promising for developing al-
ternative treatment methods to combat N. ceranae (Damiani et al.,
2014; Costa et al., 2010; Strachecka et al., 2015; Porrini et al., 2011).

Previous work supports the notion that propolis, as a natural

product obtained from plant resins by bees, can be effective at in-
hibiting microsporidian development and improve infected honey bee
survival (Suwannapong et al., 2011b; Krol et al., 1993). Therefore, in
this study we not only evaluate the potential of propolis to control
Nosema development in Apis florea, but we also measure the extent in
which the treatment can ameliorate its associated pathological effects
by measuring trehalose levels in the haemolymph and the protein
content of the hypopharyngeal gland that are known to decrease in
infected bees (Wang and Moeller, 1969; Mayack and Naug, 2010;
Suwannapong et al., 2010). The aim of this study was to investigate the
effect of propolis on experimentally infected A. florea workers in-
oculated with Nosema spores due to its ability to spread to other native
bee species in the local area and cause increased virulence in a new
host.

Materials and methods

Preparing propolis extractions

Propolis was obtained from three colonies of the stingless bee
Trigona apicalis in an apiary located in Chanthaburi Province, Thailand.
The propolis obtained was collected from plants growing in this local
area collected by managed stingless bees from a central research sta-
tion. Propolis was first dried in a hot air oven at 80 °C for 72 h, and then
60 g of it was shaken with a 100ml of 70% ethanol, followed by gravity
filtration using a Whatman No. 4 filter. This crude extract was stored in
a dark bottle and was considered as a stock solution of 100% propolis
extract. The stock propolis extract was then diluted with distilled water
to make 50% and 70% concentrations (v/v) that were used in the fol-
lowing experiment as propolis ethanoic extraction treatments.

Nosema spore preparation

Nosema spores were isolated from three heavily infected colonies of
Apis cerana located in the Samut Songkhram Province, in southern
Thailand. Honey bee midguts were each placed in a microcentrifuge
tube containing 200 μl distilled water and homogenized using a sterile
pestle. These tubes were then spun at 6000g for 10min three times or
until pollen grains could be separated. Spores were counted using a
hemocytometer. Spores were then re-suspended in 50% (w/v) sucrose
solution at a concentration required to feed 8×104 spores per bee. The
sucrose solution containing spores was kept at 4 °C until it was needed
for inoculation.

Nosema inoculation and propolis extract treatment

Bee brood comb from tree branches were obtained from three co-
lonies of A. florea free of Nosema. To provide newly emerged worker
bees for caged experiments, this comb was incubated at 34 ± 2 °C with
relative humidity maintained between 50 and 55%. The newly emerged
bees were carefully removed and placed in a cage (50 bees per cage).
Two days after eclosion they were divided into six treatment groups (50
bees per group), each treatment group was placed in one bee cage. The
first three treatment groups were randomly selected to be inoculated
with Nosema and this was accomplished by individually force-feeding
2 μl of the 50% sucrose solution (w/v) containing 8×104 Nosema
spores. These treatment groups were then provided with 0%, 50% and
70% propolis extract mixed with 20ml 50% sucrose solution (v/v),
defined as 0P, 50P and 70P, respectively. The last three treatment
groups were deemed as controls. The negative control (CO) was not
infected with Nosema, was not treated with propolis, and did not re-
ceive any ethanol. The propolis control bees (CP), were not infected
with N. ceranae, but instead were treated with 70% propolis, without
ethanol. The last control group was infected with N. ceranae, but treated
with 49% ethanol (CE), which was based on the amount used during the
extraction of the 70% propolis extraction process. All treatment groups
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were provided with the same food (60 g of pollen mixed with 20ml of
50% sucrose solution (w/v)) (Table 1).

Percent of infected gut cells in each bee

Three bees were randomly selected from each cage and were col-
lected at 14 d p.i., so that their ventriculi could be processed for mi-
croscopic examination. The bee midguts were removed and fixed with
Bouin's fixative for 22–24 h, then washed three times in 70% ethanol.
These were then dehydrated with a standard series of ethanol con-
centrations (70–100%), cleared using xylene, infiltrated with mixtures
of xylene and melted paraffin, and then embedded in pure melted
paraffin. Tissue was cut 6 μm thick using a rotary microtome (Leica,
Germany), then stained with periodic acid Schiff's reagent (PAS), and
counterstained with light green for examination under a light micro-
scope (Olympus CX50). The percentage of infected cells was calculated
based on measuring a hundred ventricular cells.

Hypopharyngeal gland protein contents

Ten bees were randomly selected from each cage at six, ten, and
fourteen days post inoculation (p.i.). Their hypopharyngeal glands were
dissected and removed from each bee. These glands were transferred to
50 μl phosphate buffer (pH 7.4), were crushed, and then centrifuged at
1000g for 2min. Supernatants were used for protein content analysis,
which involved using a Bradford protein assay (Bradford, 1976) Stan-
dard curves were prepared using Bovine serum albumin (BSA), and the
following concentrations, 25–500 μg/μl, were used to generate a stan-
dard curve. The absorbance was measured at a wavelength of 595 nm
subtracted from a blank reagent using a Shimadzu UV–visible spectro-
photometer (UV-1610).

Trehalose level in honey bee haemolymph

Ten bees were randomly selected and removed from each cage on
six, ten and fourteen days post infection (p.i.), these bees were anaes-
thetized at −20 °C for 5min so that their haemolymph could be col-
lected. The immobilized bees were placed on a wax petri dish plate and
mounted using a pair of insect pins that crossed over between the
thorax and abdomen. Using a glass microcapillary, 5 μl of haemolymph
per bee was collected, and the haemolymph was transferred to a mi-
crocentrifuge tube containing 45 μl of normal saline (0.9% NaCl). Each
sample was then transferred to a 2.9 ml anthrone reagent (0.2% an-
throne in 93% Sulfuric acid) and then vortexed for 30 s before being
quickly placed into boiling water for 15min followed by a cold water
bath for 20min. The samples were then read at 620 nm wavelength
using a Shimadzu UV–visible spectrophotometer (UV-1610). For
quantification purposes standard curves were generated using known

amounts of trehalose.

Statistical analyses

The survival of caged bees within 30 days, across treatment groups,
was analyzed using a Kaplan-Meier survival estimate. The infection
ratio, hypopharyngeal gland protein content, and trehalose data were
all found to be normal (Jarque-Bera test, P > 0.05). We therefore used
a one-way ANOVA for the analysis of the infection ratio. We also used a
General Linear Mixed Model (GLMM) for each dependent variable of
infection ratio, hypopharyngeal gland protein content, and trehalose
where the day after infection (6, 10, and 14 p.i.) and treatment (0%
Propolis extract treatment, 50% Propolis extract treatment, 70%
Propolis extract treatment, CO, Control for Ethanol, and CP) served as
independent variables, cage number was considered as a random effect.
A Tukey's post hoc test was performed for the Kaplan Meier estimates,
day after infection, and treatment comparisons.

Results

Survival analysis

The survival of worker bees infected with Nosema spores was sig-
nificantly lower than the propolis-treated bees. Honey bee mortality in
the CE and 0P groups began on day seven p.i. Survival of the uninfected
groups (CO, CP) and propolis treated infected groups (50P, 70P) were
higher than the infected CE and 0P treatment groups. However, the
survival rate of honey bees in the 50P and 70P was significantly lower
than those of uninfected groups, CO and CP (F=39.48, df= 5;
P < 0.0001) (Fig. 1). The highest survival rate was found in the CO
group with 89 ± 8.9%, followed by CP with 86 ± 8.4%, 50P with
54 ± 11.5%, 70P with 32 ± 2.1%, CE with 27 ± 9.6%, and 0P with
10 ± 1% survival, respectively.

Protein contents of hypopharyngeal glands

The overall protein content of the hypopharyngeal gland sig-
nificantly fluctuated over time after the infection (GLMM days after
infection main effect: F2,53= 19.86, P < 0.0001) and the effect of the
treatments was depended upon the time after post infection (GLMM
interaction: F10,53= 5.49, P < 0.0001). However, the control bees that
were fed propolis extract (CP) had overall the highest protein content
and this was significantly higher in comparison to the negative control
(CO) and infected bees treated with 50% propolis extract (50P). This
was followed by the infected bees treated with 70% propolis extract
(70P) that had significantly higher protein content overall in compar-
ison to infected bees treated with ethanol only (CE) and infected bees
treated with 0% propolis extract (0P) (GLMM treatment main effects:

Table 1
All of the treatment groups with their corresponding experimental manipulations. Nosema spores harvested from Apis cerana were used for the inoculation of Apis florea. All treatment
groups were fed the same diet and each cage started with a total of 50 bees. group contained three replicate cages from each of the three source colonies, totaling to 9.

Treatment group N. ceranae inoculation
(spores/bee)

Propolis treatment (%
v/v)

Ethanol exposure
(%)

Food provided Number of cage
replicates (N)

(0P) Infected with 0% propolis
extract treatment

80,000 0 49 60 g of pollen mixed with 20ml of
50% sucrose solution (w/v)

9

(50P) Infected with 50% propolis
extract treatment

80,000 50 49 60 g of pollen mixed with 20ml of
50% sucrose solution (w/v)

9

(70P) Infected with 70% propolis
extract treatment

80,000 70 49 60 g of pollen mixed with 20ml of
50% sucrose solution (w/v)

9

(CO) No infection, with no
treatment

0 0 0 60 g of pollen mixed with 20ml of
50% sucrose solution (w/v)

9

(CP) No infection with propolis
extract treatment

0 70 0 60 g of pollen mixed with 20ml of
50% sucrose solution (w/v)

9

(CE) Infection with ethanol extract
treatment

80,000 0 49 60 g of pollen mixed with 20ml of
50% sucrose solution (w/v)

9
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F5,53= 19.86, P < 0.0001, Tukey HSD, alpha= 0.05). N. ceranae in-
fected bees after treatment with 50% and 70% propolis showed that
propolis was associated with a significant overall increase in bee hy-
popharyngeal gland protein content in comparison to the CE and 0P
treatment groups (Fig. 2).

Trehalose level in honey bee haemolymph

We found a significant increase and then decline in overall trehalose
levels in the haemolymph as time increased after the infection (GLMM:
time after infection main effect: F2,53= 69.59, P < 0.0001) and the
effects of the treatment depend on the time after post infection (GLMM:
interaction: F10,53= 9.42, P < 0.0001).

Overall across treatment groups the highest amount of haemolymph
trehalose levels was found in the control uninfected bees either treated
with or without propolis (CO and CP), and the infected bees treated
with 70% propolis extract (70P). On the other hand, infected bees
treated with 50% propolis extract (50P) had significantly lower hae-
molymph trehalose levels, but not as low as the infected bees treated
with ethanol (CE) and the infected bees treated with 0% propolis ex-
tract (0P), as both of these groups had the lowest overall trehalose le-
vels (GLMM treatment main effects: F5,53= 69.1, P < 0.0001, Tukey
HSD, alpha=0.05) (Fig. 3).

Percentage of infected gut lining cells

The infection percentages of CO, CP, CE, 0P, 50P and 70P at 14 d
p.i. were 0.0, 0.0, 66.98% ± 13.73, 72.18% ± 1.89, 16.09% ± 0.99
and 14.73% ± 0.60, respectively. The highest infection percentage
occurred in the infected bees treated with 0% propolis extract (0P) and
ethanol only (CE). The propolis extract treatment of 50% and 70%
significantly reduced the Nosema load in infected bees, but these bees
still had significantly higher infection loads in comparison to the un-
infected bees (CO and CP) (F5,17= 62.56, P < 0.0001) (Fig. 4). No-
sema spores were distributed throughout the cell cytoplasm of all in-
fected bees and the ventricular cells of control bees, CO and CP, showed
no infection. The degeneration of the apical membrane was observed in
infected bees (Fig. S3a and b). However, fewer spores were found in
50P and 70P treated bees compared to the infected bees that did not
receive the propolis extract treatment (Fig. S3c and d). Transmission
electron micrography of the ventricular cells of A. florea that were
treated with the propolis extract showed deformed N. ceranae spores
throughout the cytoplasm at day 14 p.i (Fig. S3e and f).

Discussion

Without any treatment, we confirmed that Nosema infection
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significantly reduces the life span of the red dwarf honey bee, A. florea.
This finding is supported by previous studies that have demonstrated
this in the closely related honey bee species Apis mellifera (Mayack and
Naug, 2009; Mayack and Naug, 2010; Martín-Hernández et al., 2011;
Maistrello et al., 2008; Suwannapong et al., 2010; Higes et al., 2007;
Eiri et al., 2015) and with A. florea (Suwannapong et al., 2010).
However, interestingly, bees treated with stingless bee propolis extract
after infection with N. ceranae spores had significantly longer life spans,
lowered parasite loads, but increased haemolymph trehalose and hy-
popharyngeal gland protein content as well. However, in this study we
show that there appears to be a dose dependent effect because the
higher 50P concentration of propolis extract that was used in this study
causes a larger increase in survival. However, we cannot rule out the
possibility that administering even higher concentrations may cause a
potentially toxic effect because the 70P dose tested had significantly
lower survival in comparison to the 50P treated bees and this could be
due to exposure to extremely concentrated levels of terpenoids, flavo-
noids, phenols and other secondary plant metabolite compounds ex-
tracted from propolis (Porrini et al., 2011).

In this study we additionally demonstrate that the propolis extract
treatment can cause a significant increase in the trehalose levels in the
haemolymph of infected bees. These findings support the notion that
stingless bee propolis extract can be used as an effective treatment to

not only improve bee health by reducing N. ceranae parasite loads, but
is also effective at counteracting one of the main pathological effects
from the infection found in infected A. mellifera, which has been iden-
tified to be energetic stress indicated by the lowering of trehalose levels
in the haemolymph (Dussaubat et al., 2012; Vidau et al., 2014; Mayack
and Naug, 2009; Alaux et al., 2010; Mayack and Naug, 2010). This is
important to note because energetic stress from an infection can have
wide ranging effects and has been linked to risky foraging, lowered
foraging frequency, and lowered foraging efficiency, which is suspected
to decrease pollinator efficiency and reduce survival for the individual
and the colony as a whole (Mayack and Naug, 2013; Wolf et al., 2014;
Naug, 2014; Mayack and Naug, 2011). What is even more promising for
using stingless bee propolis extract as a possible treatment to control
Nosema is that the propolis extract treatment itself did not significantly
reduce the life-span, protein content of the hypopharyngeal gland, or
the haemolymph trehalose levels, suggesting that the propolis extract
treatment itself does not appear to be harming the bee.

Other studies investigating the use of natural extracts have found
that they are effective at reducing Nosema loads with the treatment
itself not causing a decline in the survival of the honey bee A. mellifera,
which suggests that using this approach to control Nosema infections is
a viable option (Damiani et al., 2014; Strachecka et al., 2015). The bees
treated with ethanol alone do not have significantly lower survival,

0

50

100

150

200

250

300

41016

T
r
e

h
a

lo
s
e

 C
o

n
c
e

n
tr

a
ti
o

n
 (

µ
g
/b

e
e

)

Post Infection (days)

CO = No infection, no

treatment

CP = No infection, 70%

propolis treatment

CE = Infection, ethanol

treatment

0P = Infection, no propolis

treatment

50P = Infection, 50%

propolis extract treatment

70P = Infection, 70%

propolis extract treatment
a a a a

b b

a a a

b

c c

a ab

b
bc

c
c

Fig. 3. Mean ± SD trehalose in the haemolymph of A. florea bees
at six, ten and fourteen days p.i. The treatment groups consisted of
infected bees being treated with 0% (0P), 50% (50P), and 70%
(70P) dosages of propolis, while the control bees did not receive
any spores and these treatment groups consisted of a negative
control (CO) without getting any treatment, an ethanol control (CE)
that received only ethanol, and a propolis control (CP) that only
received a 70% propolis extract.

0

10

20

30

40

50

60

70

80

90

CO = No

infection, no

treatment

CP = No

infection,

70% propolis

treatment

CE =

Infection,

ethanol

treatment

0P =

Infection, no

propolis

treatment

50P =

Infection,

50% propolis

extract

treatment

70P =

Infection,

70% propolis

extract

treatment

P
e

r
c
e

n
t 
o

f 
In

fe
c
te

d
 C

e
ll
s

Treatment

a

b
b

c c

a

Fig. 4. Mean ± SD percentage of infected cells of the A. florea gut
lining at 14 d p.i. The treatment groups consisted of 0% (0P), 50%
(50P), and 70% (70P) propolis treatment, while (CO) the negative
control did not receive any treatment, the ethanol control (CE)
received only ethanol, and the propolis control (CP) only received a
70% propolis extract. Letters denote significant differences at the
alpha= 0.05 level.

G. Suwannapong et al. Journal of Asia-Pacific Entomology 21 (2018) 437–444

441



trehalose levels, or hypopharyngeal gland protein content either in
comparison to the bees treated with 0% propolis that have a similar
pathogen load, this confirms the idea that using ethanol as a solvent to
extract propolis does not appear to contribute to any damaging effects
beyond what N. ceranae would cause to the bees treated with the pro-
polis extract. Previous findings demonstrated that a 5% ethanol treat-
ment alone can actually synergistically increase the Nosema load of
inoculated bees by reducing the pH of the midgut (Ptaszynska et al.,
2013). Although we cannot rule out the impacts of altering the mi-
crobial gut community from administering inoculum from midguts of A.
cerana as this could have implications for bee health (Kwong and
Moran, 2016), we show that with the addition of propolis it appears to
be the “active ingredient” responsible for the lowered Nosema loads
observed.

We are confident that there is a relatively higher amount of N.
ceranae spores in comparison to N. apis present in the inoculum pre-
pared from the infected A. ceranae bees based on the molecular ana-
lysis. This finding corresponds to the external morphological structures
observed using SEM and light microscopy. Based on visualization of
spore morphology there were distinct and various spore shapes and
sizes corresponding to the dimensions of the two different Nosema
species, with a large majority of spores falling into the N. ceranae ca-
tegory (Fries et al., 1996).

The ethanol consumption could have been toxic to bees, but we do
not find evidence for lowered survival in the infected bees treated with
ethanol alone in comparison to the infected bees that did not receive
the ethanolic propolis extract. Yet, the propolis extract did significantly
increase survival of infected bees and this increased survival is likely to
be result of the lowered infection, which is supported by observing the
increase in trehalose levels and hypopharyngeal gland protein content.
The reduced survival of N. ceranae infected honey bees in cages was
also demonstrated previously (Williams et al., 2014; Martín-Hernández
et al., 2011). This lowered survival in infected bees is known to be
caused by lower trehalose levels in the haemolymph (Mayack and
Naug, 2010). Therefore, the increase in trehalose levels found in pro-
polis treated bees is likely to contribute to the increased survival ob-
served in this study. Supporting this notion honey bee strains selected
for Nosema tolerance have not only increased survival, but higher tre-
halose levels as well (Kurze et al., 2016). This suggests that the ability
for the propolis treated bees to maintain higher trehalose levels in
contrast to the ethanol treated bees is likely to be one reason we ob-
serve higher survival in these propolis treated bees.

Another key symptom of a Nosema infection is the reduction in the
hypopharyngeal gland, which is correlated with lowered survival
(Sagili et al., 2005), and precocious foraging, that is estimated to ulti-
mately reduce the life-span of a Nosema infected honey bee by almost
half (Goblirsch et al., 2013; Woyciechowski and Kozlowski, 1998;
Hassanein, 1953). Therefore, the prevention of hypopharyngeal gland
loss in addition to increasing survival in propolis treated bees is critical
to improving bee health. Nosema infections have been shown to reduce
the pollen foraging in bees which may compound the effects of not
obtaining enough protein which leads to the reduction in the hypo-
pharyngeal gland in Nosema infected honey bees (Anderson and Giacon,
1992). In the same vein, despite higher parasite loads in infected honey
bees fed with a high pollen diet, a larger hypopharyngeal gland was
linked to higher survival in these infected bees (Jack et al., 2016). These
findings suggest that maintaining the protein content of the hypo-
pharyngeal gland and trehalose levels are key factors to overcoming the
pathological effects of a Nosema infection that might result from a high
Nosema parasite load. Our findings are comprehensive in nature sug-
gesting that propolis treatment should improve bee health on an in-
dividual and colony level. Disruption of the basic underpinnings of
temporal polyethism due to the reduction of the hypopharyngeal gland
may be a contributing factor to recent high colony mortality, because
workers may lose flexibility in responding to environmental stressors
that might lead to changes in colony demands (Goblirsch et al., 2013).

Our findings are also supported by the fact that stingless bee pro-
polis has documented antimicrobial activities similar to the more well-
known honey bee propolis (Farnesi et al., 2009). Moreover, previous
studies have shown that the antiseptic properties of ethanol alone does
not effectively reduce N. ceranae loads (Ptaszynska et al., 2013), sug-
gesting that in this study it is indeed the propolis which is the “active
ingredient” that is responsible for the reduced parasite load and in-
creased survival observed in the propolis treated bees. To make this a
viable option for beekeepers however, substantial improvements are
still needed, one of which is perhaps using a different extraction solvent
that does not adversely affect honey bee survival. An additional chal-
lenge would be to harvest the propolis from the stingless bees on a mass
scale, but this harvesting of propolis is already performed with man-
aged stingless bee colonies on a regular basis in Thailand and other
countries (Silva-Carvalho et al., 2015). A. florea bees do not typically
consume propolis and are not as heavily managed in comparison to A.
mellifera, but they are managed for pollination services and the interest
for managing them for honey production in Thailand is growing, as the
cost of importing A. mellifera in terms of potential exotic disease
transmission, is increasing (Suwannapong et al., 2011b). Propolis ex-
tract can easily be added to a high concentration of sugar syrup to an
external feeder placed close to the hive, which will then often be visited
by A. florea foraging bees to administer this treatment, if the hives are
found to be infected with N. ceranae. In future studies, it would be in-
teresting to see if this propolis extract treatment is just as effective for
A. mellifera infections as this might confirm how representative this
treatment might be in its antifungal properties. Our results suggest new
opportunities for maintaining long-term bee health and sheds light on
possible alternative ways, other than using Fumagillin, to manage No-
sema infections. The development of new methods for the control of
Nosemosis like in this study, if applicable to A. mellifera, will benefit
beekeepers and bee scientists interested in controlling Nosema infec-
tions, which will facilitate new strategies that can be used to improve
honey bee health.
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