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Abstract

The discrete-time rational Calogero’s goldfish system is obtained from the Ansatz
Lax pair. The discrete-time Lagrangians of the system possess the discrete-time
1-form structure as those in the discrete-time Calogero-Moser system and discrete-
time Ruijsenaars-Schneider system. Performing two steps of continuum limits, we
obtain Lagrangian hierarchy for the system. Expectingly, the continuous-time La-
grange 1-form structure of the system holds. Furthermore, the connection to the
lattice KP systems is also established.

1 Introduction

The multi-dimensional consistency plays a very important role for the notion on
integrability of the discrete systems. In the nutshell, for any D-dimensional discrete
system, we find that the system in higher dimensions (spaces and times) can be
compatibly constructed from the subsystems in lower dimensions (spaces and times).
The number of dimensions D can be set to be infinity which in this case we could
have an infinite set of compatible subsystems.

According to the least action principle in classical mechanics, the action of the
system is stationary for the classical path on space constituted from dependent vari-
able(s) and independent variable(s). Then we may ask what is the analogue for the
least action principle for the systems satisfying the multi-dimensional consistency.
Imagine that not only we consider the path in the subspace constituted from depen-
dent variable(s) and independent variable(s), but also the subspace of independent
variable(s). Recently, there has been a theory, called the Lagrangian multiform
theory, initiated by Sarah Lobb and Frank Nijhoff [1, 2, 3], which tried to address
the above question, explicitly for the case D = 2 [1, 2] and D = 3 [3]. The key idea
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of this theory is that the action of the systems is invariant under the variation on
the independent variables resulting in the feature relation called the closure relation
which can be considered to be representation of the multi-dimensional consistency
in Lagrangians aspect. For the case D = 1, the concrete model called the rational
Calogero-Moser system which is the many-body system in one dimension with a
long range interaction [4, 5], was studied in both discrete time and continuous time
[6]. In this case, the Lagrangians satisfy the 1-form structure. Then soon after
the rational Ruijsenaars-Schneider system (considered to be relativistic version of
the Calogero-Moser system) was also studied in the full detail of its Lagrangian
structure[7]. In the case of one dimensional many-body system with nearest neigh-
bour interaction called the Toda-typed system was also studied in the discrete level
[8, 9].

In this paper, we consider the system called the rational Calogero’s goldfish
[10] system in order to complete the big picture of the Lagrangian 1-form theory
for the integrable one-dimensional many-body systems with long range interaction.
Interestingly, the Calogero’s goldfish system can be reduced from the Ruijsenaars-
Schneider system by setting the relativistic parameter to be infinity (for relativistic
parameter approaches to zero the system will go to the Calogero-Moser system).
The organisation of the paper is the following. In section 2, the full details at the
level of discrete-time of the system will be carried out. The variation of discete-
time action constituted from the discrete curves will be computed resulting in the
discrete-time Euler-Lagrange as well as the closure relation. In section 3, the first
continuum limit called the skew limit will be computed leaving the system in semi-
discrete level. In section 4, the second continuum limit will be performed to get rid
of the remaining discrete variable resulting in the system in fully continuous level.
In section 5, the connection to the lattice KP systems is established through the
structure of the exact solution of the system. In the last section 6, the summary of
the paper will be given.

2 The discrete-time Goldfish system and com-

muting flows

In this section, we will construct the discrete time Calogero’s goldfish system. We
first consider the system of linear equations

Lκφ = ζφ , (2.1a)

Mκφ = φ̃ , (2.1b)

Nκφ = φ̂ , (2.1c)

where φ = φ(n,m) is a vector function, ζ is an eigenvalue. Here the variables (n,m)
are the discrete-time variables such that φ̃ = φ(n+ 1,m) and φ̂ = φ(n,m+ 1).
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For the rational case, we take the Lκ, Mκ and Nκ in the forms

Lκ =
hhT

κ
+L0 , (2.1d)

Mκ =
h̃hT

κ
+M0 , (2.1e)

Nκ =
ĥhT

κ
+N0 , (2.1f)

and

L0 =

N∑
i,j=1

hihjEij , (2.1g)

M0 =
N∑

i,j=1

h̃ihj
x̃i − xj

Eij , (2.1h)

N0 =
N∑

i,j=1

ĥihj
x̂i − xj

Eij . (2.1i)

The xi is the position of the ith particle and N is the number of particles in the
system. The hi = hi(n,m) are auxiliary variables. Again we define the notions (will
be used throughout the text): xi = xi(n,m) and

Forward shift in tilde direction : xi(n+ 1,m) = x̃i

Backward shift in tilde direction : xi(n− 1,m) = xi˜
Forward shift in hat direction : xi(n,m+ 1) = x̂i

Backward shift in hat direction : xi(n,m− 1) = xî
and the variable κ is the additional spectral parameter. The Eij is the matrices
with entries (Eij)kl = δikδjl.

Next we will look at the compatibility of the system of equations (2.1).

First discrete flow : The compatibility between (2.1a) and (2.1b) gives

L̃κMκ = MκLκ(
h̃h̃T

κ
+ L̃0

)(
h̃hT

κ
+M0

)
=

(
h̃hT

κ
+M0

)(
hhT

κ
+L0

)
. (2.2a)

Considering the coefficient of 1/κ2, we have

N∑
j=1

h̃2
j =

N∑
j=1

h2
j , (2.2b)

and the coefficient of the 1/κ provides

L̃0h̃h
T + h̃h̃TM0 = M0hh

T + h̃hTL0 . (2.2c)
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For the rest of (2.2a), we obtain

L̃0M0 = M0L0 . (2.2d)

The equations (2.2c) and (2.2d) produce the identical set of equations

N∑
j=1

h̃2
j

x̃j − xl
=

N∑
j=1

h2
j

x̃i − xj
, (2.2e)

for all i, j = 1, 2, ..., N . Since both sides of (2.2e) depend on different external
indices, we can write a coupled system of equations:

N∑
j=1

h̃2
j

x̃j − xl
= −p ,∀l , (2.2f)

N∑
j=1

h2
j

x̃i − xj
= −p ,∀i , (2.2g)

where p = p(n) is independent of particles’ indices, but can still be a function of
discrete-time variable n.

In order to determine the function hi, we use the Lagrange interpolation formula.
Consider 2N noncoinciding complex numbers xk and yk, where k = 1, 2, ..., N . Then
the following formula holds true:

N∏
k=1

(ξ − xk)
(ξ − yk)

= 1 +
N∑
k=1

1

(ξ − yk)

∏N
j=1(yk − xj)∏N

j=1,j 6=k(yk − yj)
. (2.2h)

As a consequence

− 1 =

N∑
k=1

1

(xi − yk)

∏N
j=1(yk − xj)∏N

j=1,j 6=k(yk − yj)
, i = 1, ..., N , (2.2i)

which is obtained by inserting ξ = xi into Eq. (2.2h).

Using (2.2i), we obtain

h2
j = p

∏N
i=1(xj − x̃i)∏N
j 6=i(xj − xi)

, (2.2j)

h̃2
j = −p

∏N
i=1(x̃j − xi)∏N
j 6=i(x̃j − x̃i)

, (2.2k)

for j = 1, 2, ..., N . Equating (2.2j) with (2.2k), we obtain the system of equations

− p
p˜

(xi − x̃i)
(xi − x˜i) =

N∏
j=1
j 6=i

(xi − x˜j)(xi − x̃j)
. (2.2l)

For simplicity, we take p to be constant and then (2.2l) is simply the discrete-time
equations of motion for the Calogero’s goldfish system in the tilde-direction, see [11].
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Second discrete flow : We consider the compatibility between (2.1a) and (2.1b)

L̂κNκ = NκLκ(
ĥĥT

κ
+ L̂0

)(
ĥhT

κ
+N0

)
=

(
ĥhT

κ
+N0

)(
hhT

κ
+L0

)
. (2.3a)

What we obtain are the relation

N∑
j=1

ĥ2
j =

N∑
j=1

h2
j , (2.3b)

and the set of equations

N∑
j=1

ĥ2
j

x̂j − xl
=

N∑
j=1

h2
j

x̂i − xj
, (2.3c)

for all i, j = 1, 2, ..., N . Using the same argument as in the previous case, we obtain

N∑
j=1

ĥ2
j

x̂j − xl
= −q , ∀l , (2.3d)

N∑
j=1

h2
j

x̂i − xj
= −q , ∀i , (2.3e)

but with different parameter q = q(m). Using the Lagrange interpolation formula,
we get

h2
j = q

∏N
i=1(xj − x̂i)∏N
j 6=i(xj − xi)

, (2.3f)

ĥ2
j = −q

∏N
i=1(x̂j − xi)∏N
j 6=i(x̂j − x̂i)

, (2.3g)

for i = 1, 2, ..., N , and a set of equations

− q
q̂

(xi − x̂i)(xi − x̂i)
=

N∏
j=1
j 6=i

(xi − x̂j)
(xi − x̂j) . (2.3h)

We also take q to be constant and then (2.3h) is again the discrete-time equations
of motion for the Calogero’s goldfish system in the hat-direction.

Commutativity between flows: The last compatibility is between (2.1b) and
(2.1c).

M̂κNκ = ÑκMκ̂̃hĥT
κ

+ M̂0

( ĥhT
κ

+N0

)
=

̂̃hh̃T
κ

+ Ñ0

( h̃hT
κ

+M0

)
. (2.4a)
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Equation (2.4a) gives the relation

N∑
j=1

h̃2
j =

N∑
j=1

ĥ2
j , (2.4b)

which can be considered as the consequence of the first two relations on the variable
hi. Furthermore, we have

̂̃
hĥTN0 − ̂̃hh̃TM0 = Ñ0h̃h

T − M̂0ĥh
T , (2.4c)

M̂0N0 = Ñ0M0 , (2.4d)

which produce a set of equations

N∑
j=1

(
ĥ2
ĵ̃xi − x̂j −

h̃2
ĵ̃xi − x̃j
)

=
N∑
j=1

(
h̃2
j

x̃j − xl
−

ĥ2
j

x̂j − xl

)
. (2.4e)

Again this equation is noting but the consequence of equations (2.2j) , (2.2k), (2.3f)
and (2.3g).

Equating (2.2j) with (2.3f) and (2.2k) with (2.3g), we obtain

p

q
=

N∏
j=1

(xi − x̂j)
(xi − x̃j)

, (2.4f)

p

q
=

N∏
j=1

(xi − x̂j)(xi − x˜j) . (2.4g)

Using equations of motion (2.2l) and (2.3h), we have another two relations

− p

q
=

N∏
j=1

(xi − x̂j)
(xi − x˜j) , (2.4h)

−p
q

=

N∏
j=1

(xi − x̂j)(xi − x̃j)
. (2.4i)

These equations can be treated as constraints describing how two discrete flows
connect at the centre of the lattice as shown in figure 1. Equating between (2.4f)
and (2.4g) as well as (2.4h) and (2.4i) give equation of motion for discrete-time
Calogero’s goldfish

N∏
j=1

(xi − x̃j)
(xi − x˜j) =

N∏
j=1

(xi − x̂j)
(xi − x̂j) , (2.5)

which expresses the compatibility with the set of O∆Es.

Exact solution : We first start to consider the solution for the tilde-direction.
The matrices M0 and L0 can be rewritten in the form

X̃M0 −M0X = h̃hT , (2.6a)

L0 = hhT , (2.6b)
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x(n, m)

x(n + 1, m)

x(n, m + 1)

x(n, m � 1)

x(n � 1, m)

Figure 1: The lattice structure is constituted from two discrete flows: (n,m). The horizontal
and vertical lines are described by the equations of motion for tilde-direction and hat-direction,
respectively. The constraints describe the relation between two discrete flows at four corners
around the centre.

where X =
∑N

i=1 xiEii is the diagonal matrix. From the Lax equation (2.2c) and
(2.2d), we obtain the relations

L̃0M0 = M0L0 , (2.7a)

L̃0h̃−M0h = −ph̃ , (2.7b)

hTL0 − h̃TM0 = −phT . (2.7c)

We now factorise the Lax matrices as follows:

L0 = UΛU−1 , and M0 = ŨU−1 , (2.8)

where U is an invertible N × N matrix and the matrix Λ is constant: Λ̃ = Λ.
Obviously, if L0 is diagonalisable Λ is just its diagonal matrix of eigenvalues. Next,
let us introduce

Y = U−1XU , r = U−1 · h , sT = hT ·U , (2.9)

and we get from (2.7) and (2.8),

(pI + Λ) · r̃ = r , sT · (pI + Λ) = s̃T , (2.10)

where I is the unit matrix. From (2.6a)

Ỹ − Y = r̃sT . (2.11)

The dyadic rsT can be eliminated from (2.11) by making use of (2.10) resulting to

Ỹ = Y +
Λ

(pI + Λ)
. (2.12)

After n discrete steps, we find that

Y (n,m) = Y (0,m) +
nΛ

(pI + Λ)
, (2.13)
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Automatically, we find that the solution in the hat-direction is

Y (n,m) = Y (n, 0) +
mΛ

(qI + Λ)
. (2.14)

Combining (2.13) and (2.14), we obtain the complete solution of the system

Y (n,m) = Y (0, 0) +
nΛ

(pI + Λ)
+

mΛ

(qI + Λ)
, (2.15)

where xi(n,m) can be determined by considering the eigenvalues of the matrix
Y (n,m).

Discrete actions: We find that the equations of motion in the tilde-direction
(horizontal discrete curve in figure 1) are the consequence of variation of the dis-
crete action

SH = L(p)(x, x̃) + L(p)(x,x˜) , (2.16a)

yielding

δSH = 0 ⇒
∂L(p)

∂x̃i
+
∂̃L(p)

∂xi
= 0 , (2.16b)

where

L(p) =

N∑
i,j=1

(xi − x̃j) ln(xi − x̃j) + ln |p|
N∑
i=1

(xi − x̃i) . (2.16c)

Equation (2.16b) gives the discrete-time equations of motion in the tilde-direction
equation (2.2l). In the hat-direction (vertical discrete curve in figure 1), we also
have the equations of motion which are the consequence of variation of the discrete
action

SV = L(q)(x, x̂) + L(q)(x,x̂) , (2.16d)

yeilding

δSV = 0 ⇒
∂L(q)

∂x̂i
+
∂̂L(q)

∂xi
= 0 , (2.16e)

where

L(q) =

N∑
i,j=1

(xi − x̂j) ln(xi − x̂j) + ln |q|
N∑
i=1

(xi − x̂i) . (2.16f)

Equation (2.16e) gives the discrete-time equations of motion in the tilde-direction
equation (2.3h). Furthermore, we also have another four discrete actions corre-
sponding to two different discrete curves connecting at the centre as shown in figure
2(a)

SC1 = L(p)(x̃,x) + L(q)(x, x̂) , (2.16g)

SC2 = L(p)(x˜,x) + L(q)(x, x̂) , (2.16h)

SC3 = L(p)(x˜,x) + L(q)(x,x̂) , (2.16i)

SC4 = L(p)(x̃,x) + L(q)(x,x̂) . (2.16j)
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x(n, m)

x(n + 1, m)

x(n, m + 1)

x(n, m � 1)

x(n � 1, m)

SC4SC3

SC2 SC1

(a)

(n, m) (n + 1, m)

(n, m + 1) (n + 1, m + 1)

(b)

Figure 2: (a) Discrete actions around the centre of the lattice. (b) The deformation of the
discrete curve on the space of the independent variables.

The variation on these four actions yields nothing but the constraint equations.

Another important feature for this discrete Lagrangians is the closure relation

̂L(p)(x, x̃)−L(p)(x, x̃)− ˜L(q)(x, x̂) + L(q)(x, x̂) = 0 , (2.16k)

which is the direct result of variation of the discrete curve on the space of indepen-
dent variables (n,m), see also [6, 7]. The validity of (2.16k) can be shown with the
help of equations of motion (2.2l) and (2.3h). The closure relation ensures that the
action of the system is invariant under the local deformation of the discrete curve,
see figure 2(b).

Remark : From the Lagrangians (2.16c) and (2.16f), we define the momentum
variables

pi = −
∂L(p)

∂x̃i
=

N∑
j=1

ln(xj − x̃i) + 1 + ln |p| , (2.17)

πi = −
∂L(q)

∂x̂i
=

N∑
j=1

ln(xj − x̂i) + 1 + ln |q| , (2.18)

corresponding to the tilde-direction and the hat-direction, respectively. Using the
above relations, we can write (2.2j) in the form

h2
k =

epk−1∏
j 6=k(xk − xj)

, (2.19)

and (2.3f) in the form

h2
k =

eπk−1∏
j 6=k(xk − xj)

. (2.20)

The Hamiltonian of the system is given by

H = TrL0 =

N∑
k=1

h2
k . (2.21)
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Then equations (2.2b), (2.3b) and (2.4b) are

N∑
k=1

h2
k =

N∑
k=1

h̃2
k 7→ H = H̃ , (2.22)

N∑
k=1

h2
k =

N∑
k=1

ĥ2
k 7→ H = Ĥ , (2.23)

N∑
k=1

h̃2
k =

N∑
k=1

ĥ2
k 7→ H̃ = Ĥ . (2.24)

Equations (2.22) and (2.23) represent the energy conservation law under the tilde-
direction and the hat-direction since both discrete time flows share the same L
matrix. Equation (2.24) can be treated as the discrete analogue of the commuting
flows.

3 The partial-continuum limit

In this section, we consider the continuum limit of the discrete-time Calogero’s
goldfish system which had been investigated in the previous section. Since there are
two discrete-time variables (n,m), we may perform directly continuum limit of each
of these variables resulting the usual continuous-time Calogero’s goldfish system
[11]. We now work with another type of continuum limit namely the skew limit. In
order to proceed to this limit, we introduce a new discrete-time variable N = n+m
and with this new variable we have a set of transformations on the variables such
that

x(n,m) 7→ x(N,m) =: x

x̃ = x(n+ 1,m) 7→ x(N + 1,m) =: x̄ ,

x̂ = x(n,m+ 1) 7→ x(N + 1,m+ 1) =: ̂̄x ,̂̃x = x(n+ 1,m+ 1) 7→ x(N + 2,m+ 1) =: ̂̄̄x .
We also introduce ε = p − q and εm = τ and then send n → −∞, m → ∞, ε → 0
while keeping N and τ fixed.

We first consider the skew limit on the exact solution given in (2.15). We can
rewrite the solution in terms of the new variables

Y (n,m) 7→ Y (N,m) = Y (0, 0) +
NΛ

pI + Λ
+

mεΛ

(p+ Λ)2(1− ε
p+Λ)

. (3.1)

lim
m→∞
ε→0
εm→τ

Y (N,m) 7→ Y (N, τ) = Y (0, 0) +
NΛ

pI + Λ
+

τΛ

(pI + Λ)2
. (3.2)

The shift on the position of particles in the hat-direction becomes

̂̄x = x(N + 1,m+ 1) 7→ ̂̄x = x(N + 1, τ + ε)

x̂ = x(N− 1,m− 1) 7→ x̂ = x(N− 1, τ − ε)
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and the expansions with respect to ε lead to

̂̄x = x(N + 1, τ + ε) 7→ x̄ + ε
∂x̄

∂τ
+
ε2

2

∂2x̄

∂τ2
+ ... , (3.3)

x̂ = x(N− 1, τ − ε) 7→ x− ε∂x

∂τ
+
ε2

2

∂2x

∂τ2
− ... . (3.4)

The positions of the particles x(N, τ) can be computed by considering the eigenval-
ues of (3.2) [16].

Equations of motion and constraints: The equations of motion (2.3h) in terms
of new variables (N, τ) are given by

N∑
j=1

(
ln(̂̄xj − xi)− ln(xi − x̂j)) = 0 . (3.5a)

Expanding the variable x with respect to the variable ε and collecting terms in
power of ε, we find

O(ε0) :

N∑
j=1

(
ln(x̄j − xi)− ln(xi − xj)

)
= 0 , (3.5b)

O(ε1) :
N∑
j=1

[
∂x̄j
∂τ

(
1

x̄j − xi

)
−
∂xj
∂τ

(
1

xi − xj

)]
= 0 . (3.5c)

We terminate the series at O(ε1), but the higher order terms can be directly ob-
tained by continuing the expansion. What we see from the result is that (3.5b) the
equations of motion of Calogero’s goldfish system in terms of the new discrete-time
variable N. The (3.5c) is the equations of motion of Calogero’s goldfish system in
terms of the continuous variable τ .

Next, we perform the limit on the constraints and collect the first dominant terms

− 1

p
=

N∑
j=1

∂x̄j
∂τ

(
1

xi − x̄j

)
, (3.5d)

1

p
=

N∑
j=1

∂xj
∂τ

(
1

xi − xj

)
. (3.5e)

The combination of (3.5d) with (3.5e) gives directly the equations of motion (3.5c).

The Lagrangians and closure relation : We start in this section to write La-
grangian (2.16f) in terms of the variables (N,m)

L(q) 7→
N∑

i,j=1

(
xi − ̂̄xj) ln(xi − ̂̄xj) + ln |p− ε|

N∑
i=1

(xi − ̂̄xi) . (3.6a)

Then, we expand with respect to the variable ε resulting to

L(q) 7→ ε0L(N) + ε1L
(1)
(τ) + ... , (3.6b)
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where

L(N) =
N∑

i,j=1

(xi − x̄j) ln(xi − x̄j) + ln |p|
N∑
i=1

(xi − x̄i) , (3.6c)

L
(1)
(τ) = −

N∑
i,j=1

∂x̄j
∂τ

(1 + ln(xi − x̄j))− ln |p|
N∑
i=1

∂x̄i
∂τ
− 1

p

N∑
i=1

(xi − x̄i) . (3.6d)

These Lagrangians gives the equations of motion (3.5b) and (3.5c). This can be
seen by substituting the Lagrangians in the following Euler-Lagrange equations

∂L(N)

∂x
+
∂L(N)

∂x̄
= 0 , (3.6e)

∂L
(1)
(τ)

∂x
+
∂L

(1)
(τ)

∂x̄
− d

dτ

 ∂L
(1)
(τ)

∂
(
∂x̄
∂τ

)
 = 0 . (3.6f)

Furthermore, the constraints (3.5d) and (3.5e) are the result of Euler-Lagrange of

Lagrangian L
(1)
(τ) with respect to the variable x̄

∂L
(1)
(τ)

∂x̄
− d

dτ

 ∂L
(1)
(τ)

∂
(
∂x̄
∂τ

)
 = 0 . (3.6g)

Next, we perform the continuum limit on the closure relation and collect for the
first two dominant terms in power of ε

O(ε1) :
∂L(N)

∂τ
= L

(1)
(τ) − L

(1)
(τ) . (3.6h)

The equation (3.6h) represents the closure relation between the discrete Lagrangian

L(N) and continuous Lagrangian L
(1)
(τ). This relation guarantees the invariance of

the action on the space of independent variables mixing between discrete variable
N and continuous variable τ .

4 The full continuum limit

In this section, we perform the remaining task in order to complete the continuum
limit. We set out with the expansion of (3.2) with respect to the variable p

Y(N, τ) 7→ Y(0, 0) + N
Λ

p

(
1− Λ

p
+

(
Λ

p

)2

−
(

Λ

p

)3

+ ...

)

+τΛ

(
1

p2
− 2Λ

p3
+

3Λ2

p4
− ...

)
, (4.1)

and then we collect terms in power of Λ

Y(N, τ) 7→ Y(t1, t2, t3, ..., tN ) = Y(0, 0) + Λt1 + Λ2t2 + Λ3t3 + ...+ ΛN tN ,

(4.2)
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where

t1 =
τ

p2
+

N

p
, t2 = −2τ

p3
− N

p2
, ..... , tN = (−1)N+1

(
Nτ

pN+1
+

N

pN

)
. (4.3)

The position of the ith particle Xi(t1, t2, ..., tN ) can be determined by looking for
the eigenvalues of (4.2).

With these new continuous variables, we find that

∂xi
∂τ

=
∂Xi

∂t1

∂t1
∂τ

+
∂Xi

∂t2

∂t2
∂τ

+
∂Xi

∂t3

∂t3
∂τ

+ ...+
∂Xi

∂tN

∂tN
∂τ

=
1

p2

∂Xi

∂t1
− 2

p3

∂Xi

∂t2
+

3

p4

∂Xi

∂t3
+ ...+

(−1)N+1N

pN+1

∂Xi

∂tN
, (4.4)

and

xi(N± 1) = e
± ∂
p∂t1
∓ ∂
p2∂t2

± ∂
p3∂t3

∓ ∂
p4∂t5

±....
Xi

= Xi ±
1

p

∂Xi

∂t1
+

1

p2

(
1

2

∂2Xi

∂t21
∓ ∂Xi

∂t2

)
+

1

p3

(
±1

6

∂3Xi

∂t31
− ∂2Xi

∂t1∂t2
± ∂Xi

∂t4

)
+

1

p4

(
∂Xi

∂t3
∓ 1

2

∂3Xi

∂t21∂t2
+

1

2

∂2Xi

∂t22
+

∂2Xi

∂t1∂t3

)
+ O(1/p5) . (4.5)

Later in this section, we restrict to the case of the first two time variables for the
sake of simplicity.

Equations of motion : Performing the expansion in (3.5b), we find

O(1/p) :
∂2Xi

∂t21
− 2

N∑
j=1,j 6=i

∂Xi

∂t1

∂Xj

∂t1

1

Xi −Xj
= 0 , (4.6)

O(1/p2) :
∂2Xi

∂t1∂t2
− 2

N∑
j=1,j 6=i

∂Xi

∂t1

∂Xj

∂t2

1

Xi −Xj
= 0 . (4.7)

Eq. (4.6) is just the usual equations of motion for the Calogero’s goldfish system.
Eq. (4.7) can be considered to be the equations of motion of the system next in the
hierarchy. The rest of equations of motion in the hierarchy can be determined by
just pushing further on the expansion.

Lagrangians: We immediately observe that the Lagrangians corresponding the
equations of motion (4.6) and (4.7) are

L(t1) =

N∑
i=1

∂Xi

∂t1
ln

∣∣∣∣∂Xi

∂t1

∣∣∣∣+

N∑
i 6=j

∂Xj

∂t1
ln |Xi −Xj | , (4.8)

L(t2) =
N∑
i=1

(
∂Xi

∂t2
ln

∣∣∣∣∂Xi

∂t1

∣∣∣∣− 1

2

∂Xi

∂t2

)
+

N∑
i 6=j

∂Xj

∂t2
ln |Xi −Xj | , (4.9)

with the Euler-Lagrnge equations

∂L(t1)

∂Xi
− ∂

∂t1

(
∂L(t1)

∂(∂Xi∂t1
)

)
= 0 , (4.10)

∂L(t2)

∂Xi
− ∂

∂t2

(
∂L(t2)

∂(∂Xi∂t2
)

)
= 0 . (4.11)
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Alternatively, Lagrangians (4.8) and (4.9) can be obtained by performing the full
continuum limit on the action as in the case of Calogero-Moser system and Ruijsenaars-
Schneider system, see [6, 7]. Furthermore, we find that the closure relation for these

t1

t2
(t1(s0), t2(s0))

(t1(s1), t2(s1))

S

S0

Figure 3: The deformation of the continuous curve on the space of the independent variables
(t1(s), t2(s)), where s is the time paramentised variable: s0 < s < s1. The invariance of the
action comes from the fact that δS = S′ − S = 0, resulting in the closure relation.

two Lagrangians reads
∂L(t2)

∂t1
=
∂L(t1)

∂t2
. (4.12)

Again, this relation guarantees the invariance of the action

S =

∫
Γ

(
L(t1)dt1 + L(t2)dt2

)
, (4.13)

under local deformation of the curve Γ on the space of the independent variables
(t1, t2), see figure 3.

Remark : We find that the Lagrangians L(t1) and L(t2) have the same momen-
tum variable

πi = ln

∣∣∣∣∂Xi

∂t1

∣∣∣∣+ 1 +

N∑
j=1,j 6=i

ln(Xi −Xj) , (4.14)

which can also be derived from the continuum limits of (2.18)

πi =

N∑
j=1

ln(xj − x̂i) + 1 + ln |q|,

skew limit7−−−−−−−−→ πi =
N∑
j=1

ln(xj − x̄i) + 1 + ln |p|,

full limit7−−−−−−−→ πi = ln

∣∣∣∣∂Xi

∂t1

∣∣∣∣+ 1 +

N∑
j=1,j 6=i

ln(Xi −Xj) .

Here only the dominant terms are considered.
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Using (4.14), we find that

h2
i =

∂Xi

∂t1
=

eπi−1∏
j 6=i(Xi −Xj)

, (4.15)

and the L0 becomes

L0 =
N∑

i,j=1

hihjEij =
N∑
ij=1

√
∂Xi

∂t1

∂Xj

∂t1
Eij , (4.16)

and

TrL0 = H(t1) =

N∑
i=1

∂Xi

∂t1
=

N∑
i=1

eπi−1∏
j 6=i(Xi −Xj)

, (4.17)

which is the first Hamiltonian in the hierarchy. The connection to the Lagrangian
L(t1) can be seen from Legendre transformation

L(t1) =
N∑
i=1

πi
∂Xi

∂t1
−H(t1) =

N∑
i=1

(πi − 1)
∂Xi

∂t1

=

N∑
i=1

∂Xi

∂t1
ln

∣∣∣∣∂Xi

∂t1

∣∣∣∣+

N∑
i 6=j

∂Xj

∂t1
ln |Xi −Xj | ,

with the help of (4.14).

Unfortunately, the Lax matrix L0 has to be treated as a fake Lax matrix since
it produces only the first conserved quantity of motion [10]. To obtain the rest
of the Hamiltonians, we need another method [11]. Let us consider the second
Hamiltonian given by

H(t2) =
N∑
i=1

eπi−1∏
j 6=i(Xi −Xj)

N∑
j=1,j 6=i

Xj ,

and

∂Xi

∂t2
=
∂H(t2)

∂πi
=

eπi−1∏
j 6=i(Xi −Xj)

N∑
j=1,j 6=i

Xj . (4.18)

Performing the Legendre transformation

L(t2) =
N∑
i=1

πi
∂Xi

∂t2
−H(t2) =

N∑
i=1

(πi − 1)
∂Xi

∂t2

=
N∑
i=1

∂Xi

∂t2
ln

∣∣∣∣∂Xi

∂t1

∣∣∣∣+

N∑
i 6=j

∂Xj

∂t1
ln |Xi −Xj | ,

which is the second Lagrangian (up to the total derivative term).
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5 The connection to the lattice KP systems

In [6], the discrete-time Calogero-Moser system was naturally obtained by looking
at the pole-solution of the semi-discrete KP equation. In contrast, the discrete-time
Ruijsenaars-Schneider system was constructed from Ansatz Lax pair. However, in
[7], the connect between the Ruijseenaars-Schneider system and the lattice KP sys-
tems was established. In the same fashion with the Ruijseenaars-Schneider system,
we start to derive the discrete-time Calogero’s goldfish from the Ansatz Lax pair.
In this section, we will investigate the connection between the lattice KP systems
and the Calogero’s goldfish.

We start to consider the τ -function as its characteristic polynomial:

τ(ξ) = det(ξI − Y ) , (5.1)

Y = Y (n,m, h), given in (2.14), is the function of three discrete variables and there
are the relations

Ỹ − Y = r̃sT , (5.2a)

Ŷ − Y = r̂sT , (5.2b)

Y − Y = rsT , (5.2c)

where r and s are the functions of discrete variables via the following shift relations
(see (2.10)):

(pI + Λ) · r̃ = r , sT · (pI + Λ) = s̃T , (5.3a)

(qI + Λ) · r̂ = r , sT · (qI + Λ) = ŝT , (5.3b)

(rI + Λ) · r = r , sT · (rI + Λ) = sT . (5.3c)

To derive the lattice KP equations, we first perform the computation

τ̃(ξ) = det(ξ − Y − r̃sT ) ,

= det((ξ − Y )(1− r̃sT (ξ − Y )−1)) ,

= τ(ξ)(1− sT (ξ − Y )−1r̃) ,

then we have
τ̃(ξ)

τ(ξ)
= vp(ξ) , (5.4)

in which the function vp is given by

va(ξ) := 1− sT (ξ − Y )−1(a+ Λ)−1r (5.5)

for a general parameter a.

The reverse relation of Eq. (5.4) can be obtained by a similar computation:

τ(ξ) = det(ξ − Ỹ + r̃sT ) ,

= det((ξ − Ỹ )(1 + r̃sT (ξ − Ỹ )−1)) ,

= τ̃(ξ)(1 + sT (ξ − Ỹ )−1r̃) ,
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then we have
τ(ξ)

τ̃(ξ)
= w̃p(ξ) , (5.6)

in which the function wp is given by

wa(ξ) := 1 + sT (a+ Λ)−1(ξ − Y )−1r, (5.7)

for a general parameter a.

From (5.4) and (5.6), we have the relation

τ(ξ)

τ̃(ξ)
= w̃p(ξ) =

1

vp(ξ)
. (5.8)

The same types of the relations for the other discrete directions can be obtained
through the same computation

τ(ξ)

τ̂(ξ)
= ŵq(ξ) =

1

vq(ξ)
, (5.9a)

τ(ξ)

τ(ξ)
= wr(ξ) =

1

vr(ξ)
. (5.9b)

We now introduce the N -component vectors

ua(ξ) = (ξ − Y )−1(a+ Λ)−1r , (5.10a)
tub(ξ) = sT (b+ Λ)−1(ξ − Y )−1 , (5.10b)

as well as the scalar variables

Sab(ξ) = sT (b+ Λ)−1(ξ − Y )−1(a+ Λ)−1r . (5.10c)

Equation (5.10a) can be written in the form of

ua(ξ) = (p− a)ũa(ξ) + va(ξ)ũ0(ξ) , (5.11)

with u0(ξ) = (ξ − Y )−1r, and equation (5.10b) can also be rewritten as

t̃ub(ξ) = (p− b) t̃ub(ξ) + w̃b(ξ)
t̃u0(ξ) , (5.12)

with tu0(ξ) = sT (ξ − Y )−1.

Another type of relation can be obtained by multiply s̃T (b+ Λ)−1 on the left hand
side of (5.11). We have

s̃T (b+ Λ)−1ua(ξ) = (p− a)s̃T (b+ Λ)−1ũa(ξ)

+va(ξ)s̃
T (b+ Λ)−1ũ0(ξ) ,

sT (p+ Λ)(b+ Λ)−1ua(ξ) = (p− a)S̃ab(ξ) + va(ξ)w̃b(ξ) ,

va(ξ)w̃b(ξ) = 1 + (p− b)Sab(ξ)− (p− a)S̃ab(ξ) . (5.13)

Immediately, the other equations in other discrete-time directions are

va(ξ)ŵb(ξ) = 1 + (q − b)Sab(ξ)− (q − a)Ŝab(ξ) , (5.14a)

va(ξ)wb(ξ) = 1 + (r − b)Sab(ξ)− (r − a)Sab(ξ) . (5.14b)
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Using the identity

w̃b(ξ)va(ξ)

ŵb(ξ)va(ξ)
=

w̃b(ξ)ṽa(ξ)

ŵb(ξ)v̂a(ξ)

̂̃wb(ξ)v̂a(ξ)̂̃wb(ξ)ṽa(ξ)
, (5.15)

we can derive

1 + (p− b)Sab(ξ)− (p− a)S̃ab(ξ)

1 + (q − b)Sab(ξ)− (q − a)Ŝab(ξ)

=
1 + (r − b)S̃ab(ξ)− (r − a)S̃ab(ξ)

1 + (q − b)S̃ab(ξ)− (q − a)
̂̃
Sab(ξ)

1 + (p− b)Ŝab(ξ)− (p− a)
̂̃
Sab(ξ)

1 + (r − b)Ŝab(ξ)− (r − a)Ŝab(ξ)
,

(5.16)

which is a three-dimensional lattice equation which first appeared in [12], or the
Schwarzian lattice KP equation [13].

We now multiply s̃T on the left hand side of (5.11) leading to

s̃Tua(ξ) = (p− a)s̃T ũa(ξ) + va(ξ)s̃
T ũ0(ξ) ,

sT (p+ Λ)ua(ξ) = (p− a)(1− ṽa(ξ)) + va(ξ)s̃
T ũ0(ξ) . (5.17)

Introducing
u(ξ) = sT (ξ − Y )−1r , (5.18)

Equation (5.17) can be written in the form

(p+ ũ(ξ))va(ξ)− (p− a)ṽa(ξ) = a+ sTΛua(ξ) . (5.19)

Another two relations related to the other discrete directions can be automatically
obtained

(q + û(ξ))va(ξ)− (q − a)v̂a(ξ) = a+ sTΛua(ξ) , (5.20a)

(r + u(ξ))va(ξ)− (r − a)va(ξ) = a+ sTΛua(ξ) . (5.20b)

Eliminating the term sTΛua(ξ), we can derive the relations

(p− q + ũ(ξ)− û(ξ))va(ξ) = (p− a)ṽa(ξ)− (q − a)v̂a(ξ) , (5.21a)

(p− r + ũ(ξ)− u(ξ))va(ξ) = (p− a)ṽa(ξ)− (r − a)va(ξ) , (5.21b)

(r − q + u(ξ)− û(ξ))va(ξ) = (r − a)va(ξ)− (q − a)v̂a(ξ) . (5.21c)

We now set p = a then (5.21a) and (5.21b) become

p− q + ũ(ξ)− û(ξ) = −(q − p) v̂p(ξ)

vp(ξ)
, (5.22a)

p− r + ũ(ξ)− u(ξ) = −(r − p)vp(ξ)

vp(ξ)
, (5.22b)

The combination of (5.22a) and (5.22b) gives

p− q + ũ(ξ)− û(ξ)

p− r + ũ(ξ)− u(ξ)
=
p− q + ũ(ξ)− û(ξ)

p− r + ̂̃u(ξ)− û(ξ)
, (5.23)
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which is the “lattice KP equation” [12], cf. also [14].

From the definition of the function vp(ξ) in (5.4), (5.22a) and (5.22b) can be written
in terms of the τ -function

p− q + ũ(ξ)− û(ξ) = −(q − p)
̂̃τ(ξ)

τ̂(ξ)

τ(ξ)

τ̃(ξ)
, (5.24a)

p− r + ũ(ξ)− u(ξ) = −(r − p) τ̃(ξ)

τ(ξ)

τ(ξ)

τ̃(ξ)
. (5.24b)

From (5.21c), if we set r = a we also have

r − q + u(ξ)− û(ξ) = −(q − r) τ̂(ξ)

τ̂(ξ)

τ(ξ)

τ(ξ)
. (5.25)

The combination of (5.24a) (5.24b) (5.25) yields

(p− q)̂̃τ(ξ)τ(ξ) + (r − p)τ̃(ξ)τ̂(ξ) + (r − q)τ̂(ξ)τ̃(ξ) = 0 , (5.26)

which is the bilinear lattice KP equation, (originally coined DAGTE, cf. [15]).

We managed to establish the connection between the Calogero’s goldfish system
and the lattice KP systems. This completes the picture of the connection between
discrete integrable one dimensional many-body systems, namely Calogero-Moser
system, Ruijsenaars-Schneider system and Calogero’s goldfish system, with the lat-
tice KP systems.

6 Summary

Another concrete example for the Lagrangian 1-form was studied through the ra-
tional Calogero’s goldfish system in full detail. In this example, at the discrete-time
level, the system was obtained from the Ansatz Lax pair, rather through the pole-
reduction process of the KP system in discrete-time Calogero-Moser system, like
those for the case of discrete-time Ruijsenaars-Schneider system leading to a sys-
tem of discrete-time Calogero’s goldfish systems associated with different discrete
variables. The compatibility between these two discrete direction provided the con-
straints telling how the system moves from one discrete variable to another discrete
variable. The variation of the discrete action with respect to discrete-time variable
resulting the closure relation which guarantees the unchanged value of the action
under local deformation of the discrete curve on the space of discrete-time variables.
Then the continuum limits had been applied to the system, namely the skew limit
and the full continuum limit, in order to generate the Lagrangian hierarchy of the
system. Intriguingly, these Lagrangians are the function of many-time variables (the
number of time variables is up to the number of the particles in this case). The
continuous closure relation of the system, resulting directly from the variational
principle with respect to time variables, again guarantees the invariant of the ac-
tion under the local deformation of the continuous curve on the space of continuous
variables. Furthermore, the connection between the Calogero’s goldfish system and
the lattice KP systems was established through the structure of the exact solution
of the Calogero’s goldfish system.
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