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Abstract

A general elliptic N ×N matrix Lax scheme is presented, leading to two classes of elliptic

lattice systems, one which we interpret as the higher-rank analogue of the Landau-Lifschitz

equations, while the other class we characterize as the higher-rank analogue of the lattice

Krichever-Novikov equation (or Adler’s lattice). We present the general scheme, but focus

mainly of the latter type of models. In the case N = 2 we obtain a novel Lax representation

of Adler’s elliptic lattice equation in its so-called 3-leg form. The case of rank N = 3 is

analysed using Cayley’s hyperdeterminant of format 2×2×2, yielding a multi-component

system of coupled 3-leg quad-equations.
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1 Introduction

Adler’s lattice equation, [1], is an integrable lattice version of the Krichever-Novikov (KN)

equation, [15], i.e. of the nonlinear evolution equation

ut =
1

4

(
uxxx +

3

2

r(u)− u2xx
ux

)
, (1.1)

in which r(u) = 4u3 − g2u − g3 is the polynomial associated with a Weierstrass elliptic

curve (or more generally an arbitrary quartic polynomial). This lattice equation, which

was obtained as the permutability condition for the Bäcklund transformations for (1.1),

can be written in the form1:

A [(u− b)(û− b)− (a− b)(c− b)]
[
(ũ− b)(̂̃u− b)− (a− b)(c − b)

]

+B [(u− a)(ũ− a)− (b− a)(c − a)]
[
(û− a)(̂̃u− a)− (b− a)(c− a)

]
=

= ABC(a− b) , (1.2)

cf. [16], where u = u(n,m) is the dependent variable, with the shifted variables ũ =

u(n+ 1,m), û = u(n,m+ 1) and ̂̃u = u(n+ 1,m+ 1) defining the different values of u at

the vertices around an elementary plaquette, cf. Figure 1. The a,b in Figure 1 are lattice

parameters associated with the grid size, and in this elliptic equation they are points

a = (a,A), b = (b,B), together with c = (c, C), on a Weierstrass elliptic curve, i.e.

A2 = r(a) ≡ 4a3 − g2a− g3 , B2 = r(b) , C2 = r(c) , (1.3)

which can parametrised in terms of the Weierstrass ℘−function as follows:

(a,A) = (℘(α), ℘′(α)), (b,B) = (℘(β), ℘′(β)), (c, C) = (℘(γ), ℘′(γ)) , (1.4)

where α and β are the corresponding uniformising parameters and where γ = β − α. The

parameters a, b and c are related through the addition formulae on the elliptic curve:

A(c− b) = C(a− b)−B(c− a),

a+ b+ c =
1

4

(
A+B

a− b

)2

. (1.5)

1Note that in the original paper [1] the equation was written in a slightly different form with rather

complicated expressions for the coefficients given in terms of the moduli g2 and g3 of the Weierstrass curve.
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Furthermore, we use the notation for the lattice shifts

u
α−→ ũ , u

β−→ û

being the elementary shifts on a quadrilateral lattice, each being associated with the lattice

parameters (a,A) respectively (b,B), with the equation (1.2) expressing the condition for

commutativity of these shifts as expressed through the diagram:

ũ

û

u

̂̃u

a

b b

a

Figure 1: Configuration of lattice points in the lattice equation (1.2).

A Lax pair for Adler’s equation was given in [16], and the equation reemerged in [3] as

the top equation in the ABS list of affine-linear quadrilateral equations, where it was re-

named Q4. The key integrability characteristic of Adler’s equation is its multidimensional

consistency, [18, 8], which in the case of Adler’s equation can be made manifest through

its so-called 3-leg form, cf. [3]:

σ(ξ̃ − ξ + α)σ(ξ̃ + ξ − α)

σ(ξ̃ − ξ − α)σ(ξ̃ + ξ + α)

σ(ξ̂ − ξ − β)σ(ξ̂ + ξ + β)

σ(ξ̂ − ξ + β)σ(ξ̂ + ξ − β)
=

σ(
̂̃
ξ − ξ − γ)σ(

̂̃
ξ + ξ + γ)

σ(
̂̃
ξ − ξ + γ)σ(

̂̃
ξ + ξ − γ)

(1.6)

in which the uniformising variable ξ = ξ(n,m) is now the dependent variable of the

equation, related to the original variable u of the rational form (1.2) of the equation

through the identification u = ℘(ξ). The connection between rational and elliptic form of

the equation parallels that of the KN equation, which in its (original) elliptic form reads:

ξt =
1

4

(
ξxxx +

3

2

1− ξ2xx
ξx

− 6℘(2ξ) ξ3x

)
. (1.7)

We note in passing that there are alternative forms for Adler’s equation based on

different choices of the underlying elliptic curve. Thus, if one could consider (1.2) to
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be the Weierstrass form of the equation (with parameters on a Weierstrass elliptic curve

(1.3)), the equation in Jacobi form (due to Hietarinta, [13]) reads:

Q(v, ṽ, v̂, ̂̃v) = p(vṽ + v̂̂̃v)− q(vv̂ + ṽ̂̃v)− r(ṽv̂ + v̂̃v) + pqr(1 + vṽv̂̂̃v) = 0 (1.8)

where the dependent variable v is related to u of (1.2) through a fractional linear trans-

formation, and where the parameters (p, P ), (q,Q) and (r,R) are now points on a Jacobi

type elliptic curve:

Γ : X2 ≡ x4 − γx2 + 1, γ2 = k + 1/k, (1.9)

with modulus k. They can be parametrised in terms of Jacobi elliptic function as follows:

p = (p, P ) = (
√
k sn(α; k), sn′(α; k)), q = (q,Q) = (

√
k sn(β; k), sn′(β; k)),

r = (r,R) = (
√
k sn(α− β; k), sn′(α− β; k)) . (1.10)

Many interesting results were established for the latter form of the equation, notably

explicit expressions for the (doubly elliptic) N -soliton solutions, [5], however for the sake

of the present paper we will concentrate once again on the Weierstrass form of the equation.

In the present paper we propose a general elliptic Lax scheme of rank N , which is

inspired by a novel Lax representation of Adler’s lattice equation. This Lax scheme leads

to two distinct classes of systems which we coin as being ”of Landau-Lifschitz type” (or

spin-nonzero case) and as ”of Krichever-Novikov type” (or spin-zero case). We present

general results for both classes in section 2, but then focus in the remainder of the paper

on the Krichever-Novikov class of Lax systems. In that case for N = 2 we show that the

scheme amounts to a novel Lax representation for Adler’s lattice equation, which yields

the equation directly in 3-leg form (this in contrast with the lax pair constructed in [16]

from multidimensional consistency). Notably in the rank N = 3 case the analysis of the

compatibility condition exploits a (to our knowledge novel) compound theorem for Caley’s

hyperdeterminants of format 2× 2 × 2, [9], a result which may have some significance in

its own right. We conjecture that the resulting rank 3 lattice system may be regarded

as a discrete analogue of a rank 3 Krichever-Novikov type of differential system that was

constructed by Mokhov in [20].
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2 General Elliptic Lax Scheme

Consider the Lax pair of the form:

χ̃κ = Lκ χκ , (2.1a)

χ̂κ = Mκ χκ . (2.1b)

defining horizontal and vertical shifts of the vector function χκ, according to the diagram:

where the vectors χ are located at the vertices of the quadrilateral and in which the

̂̃χχ̂

χ̃χ L

M M̃

L̂

Figure 2: Lax compatibility condition (2.4).

matrices L and M are attached to the edges linking the vertices. The matrices Lκ andMκ

can be taken of the form;

(Lκ)i,j = ΦNκ(ξ̃i − ξj − α)hj , (2.2a)

(Mκ)i,j = ΦNκ(ξ̂i − ξj − β)kj , (2.2b)

(i, j = 1, . . . , N)

in which Φκ denotes the (truncated) Lamé function

Φκ(ξ) ≡
σ(ξ + κ)

σ(ξ)σ(κ)
(2.3)

with σ denoting the Weierstrass σ-function and the variables ξi = ξi(n,m), (i = 1, . . . , N),

are the main dependent variables. As before α and β denote the uniformised lattice

parameters (as in (1.4)), while κ is the (uniformised) spectral parameter. In (2.2), the

coefficients hj , kj , are some functions of the variables ξl, and of their shifts, that remain

to be determined. The compatibility conditions between (2.1a) and (2.1b) are given by

the lattice zero-curvature condition:

L̂κMκ = M̃κLκ . (2.4)
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Using the addition formula

Φκ(x)Φκ(y) = Φκ(x+ y) [ζ(κ) + ζ(x) + ζ(y)− ζ(κ+ x+ y)] , (2.5)

the consistency gives rise to

N∑

l=1

ĥlkj

[
ζ(
̂̃
ξi − ξ̂l − α) + ζ(ξ̂l − ξj − β) + ζ(Nκ)− ζ(Nκ+

̂̃
ξi − ξj − α− β)

]
=

=

N∑

l=1

k̃lhj

[
ζ(
̂̃
ξi − ξ̃l − β) + ζ(ξ̃l − ξj − α) + ζ(Nκ)− ζ(Nκ+

̂̃
ξi − ξj − α− β)

]

(i, j = 1, . . . , N) . (2.6)

Due to the arbitrariness of the spectral parameter κ the equations (2.6) separate into two

parts, namely

(
N∑

l=1

ĥl

)
kj =

(
N∑

l=1

k̃l

)
hj , (j = 1, . . . , N) , (2.7a)

{
N∑

l=1

ĥl

[
ζ(
̂̃
ξi − ξ̂l − α) + ζ(ξ̂l − ξj − β)

]}
kj =

{
N∑

l=1

k̃l

[
ζ(
̂̃
ξi − ξ̃l − β) + ζ(ξ̃l − ξj − α)

]}
hj

(i, j = 1, . . . , N) . (2.7b)

Now there are two scenarios which we refer to as the “Landau-Lifschitz type” (or

physically, the spin non-zero) case and the “Krichever-Novikov type” (spin zero) cases

respectively:

1. Discrete Landau-Lifschitz (LL) type case:
∑

l hl 6= 0, in which case we have that the

variables hj, kj are proportional to each other, kj = ρhj , and after summing (2.7a)

we obtain the conservation law:

∑N
l=1 ĥl∑N
l=1 hl

=

∑N
l=1 k̃l∑N
l=1 kl

. (2.8)

and in which case eqs. (2.7b) reduce to:

N∑

l=1

[
ζ(
̂̃
ξi − ξ̂l − α)ρĥl − ζ(

̂̃
ξi − ξ̃l − β)k̃l

]
=

N∑

l=1

[
ζ(ξj − ξ̂l + β)ρĥl − ζ(ξj − ξ̃l + α)k̃l

]
.

(i, j = 1, . . . , N) . (2.9)
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This system of equations can be reduced under the additional assumption of the

conservation law (for the centre of mass):

Ξ̃ + Ξ̂ =
̂̃
Ξ+ Ξ , Ξ ≡

N∑

l=1

ξl . (2.10)

2. Krichever-Novikov (KN) type case:
∑

l hl =
∑

l kl = 0, in which case (2.7a) becomes

vacuous. In this case we seek further reductions by the additional constraint Ξ =
∑

l ξl = 0 (modulo the period lattice of the elliptic functions).

In this paper we will focus primarily on the class of models in # 2, but we will conclude

this section by presenting the general structure of the systems that emerge from the Lax

system in both cases, and then in the ensuing sections present an alternative analysis for

the Lax system of class # 2 for the cases N = 2 and N = 3.

In order to proceed with the general analysis of (2.9) we use a trick that was employed

in [17], based on an elliptic version of the Lagrange interpolation formula (cf. Appendix B)

in order to identify the variables hl, kl. Consider the following elliptic function, where as a

consequence of the conservation law (2.10) for the variables ξl the Lagrange interpolation

(B.6) of Appendix B is applicable, leading to the following identity:

F (ξ) =

N∏

l=1

σ(ξ − ̂̃ξl)σ(ξ − ξl − α− β)

σ(ξ − ξ̂l − α)σ(ξ − ξ̃l − β)

=
N∑

l=1

[
ζ(ξ − ξ̂l − α)− ζ(η − ξ̂l − α)

]
Hl

+

N∑

l=1

[
ζ(ξ − ξ̃l − β)− ζ(η − ξ̃l − β)

]
Kl (2.11)

which holds for any four sets of variables ξl, ξ̂l, ξ̃l,
̂̃
ξl such that (2.10) holds. In (2.11) η

can be any one of the zeroes of F (ξ), i.e.
̂̃
ξi or ξi + α+ β, and the coefficients Hj, Kj are

given by:

Hl =

∏N
k=1 σ(ξ̂l −

̂̃
ξk + α)σ(ξ̂l − ξk − β)[∏N

k=1 σ(ξ̂l − ξ̃k − γ)
]∏

k 6=l σ(ξ̂l − ξ̂k)
(2.12a)

Kl =

∏N
k=1 σ(ξ̃l −

̂̃
ξk + β)σ(ξ̃l − ξk − α)[∏N

k=1 σ(ξ̃l − ξ̂k + γ)
]∏

k 6=l σ(ξ̃l − ξ̃k)
. (2.12b)
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Furthermore, the coefficients obey the identity :

N∑

l=1

(Hl +Kl) = 0 . (2.13)

Taking ξ =
̂̃
ξi, η = ξj + α + β in (2.11) and comparing with (2.7b), we can make the

identifications:

tHl = ρĥl , tKl = −ρ̃h̃l , l = 1, . . . , N , (2.14)

with a function t being an arbitrary proportionality factor. Thus in this case (case 1) by

eliminating hl from (2.14) we get the set of equations

t̃

ρ̃
H̃l +

t̂

̂̃ρ
K̂l = 0 , l = 1, . . . , N (2.15)

which, by inserting the expressions (2.12a) for Hl and Kl, is a system of N equations for

N + 2 unknowns ξl, (l = 1, . . . , N), and ρ and t. Rewriting this system in explicit form,

we obtain the system of N 7-point equations:

N∏

k=1

σ(ξl − ξ̃k + α)σ(ξl − ξ
̂
k − β)σ(ξl − ξ̂

˜
k + γ)

σ(ξl − ξ̂k + β)σ(ξl − ξ
˜
k − α)σ(ξl − ξ̃

̂
k − γ)

= −p (2.16)

for N + 1 variables ξi (i = 1, . . . , N) and p = t
˜
ρ
̂
/(t
̂
ρ), supplemented with (2.10) which

fixes the discrete dynamics of the centre of mass Ξ . In (2.16) the under-accents ·
˜
and

·
̂

denote reverse lattice shifts, i.e., ξ
˜
i(n,m) = ξi(n − 1,m) and ξ

̂
i(n,m) = ξi(n,m −

1) respectively. These equations and their rational forms will be investigated more in

detail in a future publication. We mention here only that the one-step periodic reduction,

χ̃κ = λχκ , in this case leads to an implicit system of ordinary difference equations

which amounts to a the time-discretization of the Ruijsenaars (relativistic Calogero-Moser)

model, cf. [17]. In the remainder of the paper we will concentrate on the case #2 which

constitutes higher rank analogues of Adler’s lattice equation in 3-leg form, and we will

perform a different kind of analysis in that case.

3 Elliptic Lax pairs for 3-leg lattice systems

In this section we will focus on case #2 of general elliptic Lax systems introduced in

the previous section, corresponding to the ”spin-zero” case (where
∑N

l=1 hl =
∑N

l=1 kl =

8



0). We will first demonstrate in the case N = 2 of this system how the 3-leg form of

Adler’s equation arises in a natural way from this Lax pair. In fact, it turns out that

the elaboration of the compatibility conditions for this Lax pair immediately produces

the required equations, and is far less laborious than of the consistency-around-the-cube

(CAC) Lax pair of [16] yielding the corresponding rational form of Q4. Next we will

analyse the much more generic case of N = 3, and produce a novel system of elliptic

lattice equations, which constitutes the main result of this paper. We also present the

structure of the lattice system arising form the scheme for general N , based on similar

ingredients as the ones used in the case #1 elaborated in the previous section, but subject

to slightly different conditions.

3.1 Case N=2: Elliptic Lax Pair for the Adler 3-leg lattice equation

Let ξ = ξn,m be a function of the discrete independent variables n, m for which we want

to derive a lattice equation from the following Lax pair:

χ̃ = Lκχ = λ


 Φ2κ(ξ̃ − ξ − α) −Φ2κ(ξ̃ + ξ − α)

Φ2κ(−ξ̃ − ξ − α) −Φ2κ(−ξ̃ + ξ − α)


χ (3.1a)

χ̂ = Mκχ = µ


 Φ2κ(ξ̂ − ξ − β) −Φ2κ(ξ̂ + ξ − β)

Φ2κ(−ξ̂ − ξ − β) −Φ2κ(−ξ̂ + ξ − β)


χ , (3.1b)

in which the coefficients λ and µ are functions λ = λ(ξ, ξ̃;α) and µ = µ(ξ, ξ̂;β), re-

spectively. The explicit form of which will be derived subsequently, but these forms will

actually not be relevant for the determination of the resulting lattice equation, which is

Adler’s system in 3-leg form. The discrete zero-curvature condition (2.4) can, once again,

be analysed using the addition formula (2.5) for the Lamé function Φκ and analyzed entry-

by-entry. Applying this to each entry of both the left-hand side and right-hand side of

(2.4) we observe that in all four entries a common factor containing the spectral parameter
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κ will drop out and that we are left with the following four relations:

λ̂µ

[
ζ(
̂̃
ξ − ξ̂ − α) + ζ(ξ̂ − ξ − β)− ζ(

̂̃
ξ + ξ̂ − α) + ζ(ξ̂ + ξ + β)

]

= µ̃λ

[
ζ(
̂̃
ξ − ξ̃ − β) + ζ(ξ̃ − ξ − α)− ζ(

̂̃
ξ + ξ̃ − β) + ζ(ξ̃ + ξ + α)

]
(3.2a)

λ̂µ

[
ζ(
̂̃
ξ − ξ̂ − α) + ζ(ξ̂ + ξ − β)− ζ(

̂̃
ξ + ξ̂ − α) + ζ(ξ̂ − ξ + β)

]

= µ̃λ

[
ζ(
̂̃
ξ − ξ̃ − β) + ζ(ξ̃ + ξ − α)− ζ(

̂̃
ξ + ξ̃ − β) + ζ(ξ̃ + ξ − α)

]
(3.2b)

λ̂µ

[
ζ(−̂̃ξ − ξ̂ − α) + ζ(ξ̂ − ξ − β)− ζ(−̂̃ξ + ξ̂ − α) + ζ(ξ̂ + ξ + β)

]

= µ̃λ

[
ζ(
̂̃
ξ − ξ̃ − β) + ζ(ξ̃ − ξ − α)− ζ(

̂̃
ξ + ξ̃ − β) + ζ(ξ̃ + ξ + α)

]
(3.2c)

λ̂µ

[
ζ(−̂̃ξ − ξ̂ − α) + ζ(ξ̂ + ξ − β)− ζ(−̂̃ξ + ξ̂ − α) + ζ(ξ̂ − ξ + β)

]

= µ̃λ

[
ζ(−̂̃ξ − ξ̃ − β) + ζ(ξ̃ + ξ − α)− ζ(−̂̃ξ + ξ̃ − β) + ζ(ξ̃ − ξ + α)

]

(3.2d)

Using the identity (2.5) these four relations can be rewritten as:

λ̂µ
σ(2ξ̂)σ(

̂̃
ξ + ξ + β − α)

σ(
̂̃
ξ − ξ̂ − α)σ(

̂̃
ξ + ξ̂ − α)σ(ξ̂ − ξ − β)σ(ξ̂ + ξ + β)

= µ̃λ
σ(2ξ̃)σ(

̂̃
ξ + ξ + α− β)

σ(
̂̃
ξ − ξ̃ − β)σ(

̂̃
ξ + ξ̃ − β)σ(ξ̃ − ξ − α)σ(ξ̃ + ξ + α)

(3.3a)

λ̂µ
σ(2ξ̂)σ(

̂̃
ξ − ξ + β − α)

σ(
̂̃
ξ − ξ̂ − α)σ(

̂̃
ξ + ξ̂ − α)σ(ξ̂ − ξ + β)σ(ξ̂ + ξ − β)

= µ̃λ
σ(2ξ̃)σ(

̂̃
ξ − ξ + α− β)

σ(
̂̃
ξ − ξ̃ − β)σ(

̂̃
ξ + ξ̃ − β)σ(ξ̃ − ξ + α)σ(ξ̃ + ξ − α)

(3.3b)

λ̂µ
σ(2ξ̂)σ(

̂̃
ξ − ξ − β + α)

σ(
̂̃
ξ − ξ̂ + α)σ(

̂̃
ξ + ξ̂ + α)σ(ξ̂ − ξ − β)σ(ξ̂ + ξ + β)

= µ̃λ
σ(2ξ̃)σ(

̂̃
ξ − ξ − α+ β)

σ(
̂̃
ξ − ξ̃ + β)σ(

̂̃
ξ + ξ̃ + β)σ(ξ̃ − ξ − α)σ(ξ̃ + ξ + α)

(3.3c)

λ̂µ
σ(2ξ̂)σ(

̂̃
ξ + ξ − β + α)

σ(
̂̃
ξ − ξ̂ + α)σ(

̂̃
ξ + ξ̂ + α)σ(ξ̂ − ξ + β)σ(ξ̂ + ξ − β)

= µ̃λ
σ(2ξ̃)σ(

̂̃
ξ + ξ − α+ β)

σ(
̂̃
ξ − ξ̃ + β)σ(

̂̃
ξ + ξ̃ + β)σ(ξ̃ − ξ + α)σ(ξ̃ + ξ − α)

. (3.3d)
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Eliminating λ and µ, simply by dividing pairwise the relations over each other, we obtain

directly the 3-leg formulae. In fact, we obtain two seemingly different-looking equations

for ξ, namely:

σ(ξ̃ − ξ + α)σ(ξ̃ + ξ − α)

σ(ξ̃ − ξ − α)σ(ξ̃ + ξ + α)

σ(ξ̂ − ξ − β)σ(ξ̂ + ξ + β)

σ(ξ̂ − ξ + β)σ(ξ̂ + ξ − β)
=

σ(
̂̃
ξ − ξ − γ)σ(

̂̃
ξ + ξ + γ)

σ(
̂̃
ξ − ξ + γ)σ(

̂̃
ξ + ξ − γ)

,

(3.4a)

in which as before γ = β − α, and

σ(
̂̃
ξ − ξ̂ + α)σ(

̂̃
ξ + ξ̂ + α)

σ(
̂̃
ξ − ξ̂ − α)σ(

̂̃
ξ + ξ̂ − α)

σ(
̂̃
ξ − ξ̃ − β)σ(

̂̃
ξ + ξ̃ − β)

σ(
̂̃
ξ − ξ̃ + β)σ(

̂̃
ξ + ξ̃ + β)

=
σ(
̂̃
ξ − ξ − γ)σ(

̂̃
ξ + ξ − γ)

σ(
̂̃
ξ − ξ + γ)σ(

̂̃
ξ + ξ + γ)

,

(3.4b)

but actually these two equations are equivalent. The first equation (3.4a) is identical

to (1.6), namely the 3-leg form of the Adler lattice equation.The second equation (3.4b)

is obtained from the first by interchanging ξ ↔ ̂̃
ξ, α ↔ β, which is a symmetry of

the equation. The equivalence between these two forms is made manifest by passing to

the rational form (1.2) of the equation, and the latter connection can be seen to be a

consequence of an interesting identity given in the following statement.

Proposition 3.1. For arbitrary (complex) variables X, Y, and Z, we have the following

identity

(X − ℘(ξ + α))(Y − ℘(ξ − β))(Z − ℘(ξ − α+ β))

−t2(X − ℘(ξ − α))(Y − ℘(ξ + β))(Z − ℘(ξ + α− β))

= s
[
(−aB − bA)(℘(ξ)(XY + Y Z +XZ) +XY Z) + (b2A+ a2B)(Z℘(ξ) +XY )

+((b2A+ a2B)−B(a− b)(a− c))(X℘(ξ) + Y Z) + (−A(b− a)(b− c) + (b2A+ a2B))

×(Y ℘(ξ) +XZ) + (aB(a− b)(a− c) + bA(b− a)(b− c)−Ab3 −Ba3)(℘(ξ) +X + Y + Z)

+A(b2 − (a− b)(c− b)))2 +B(a2 − (b− a)(c− a))2 −ABC(a− b) + (A+B)XY Z℘(ξ)
]
,

(3.5)

in which

t =
σ(ξ − α)σ(ξ + β)σ(ξ + α− β)

σ(ξ + α)σ(ξ − β)σ(ξ − α+ β)
, s =

1− t2

(A+B)℘(ξ)−Ab− aB
. (3.6)
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A (computational) proof of the Proposition 3.1 is given in Appendix A. Identifying u =

℘(ξ), X = ũ = ℘(ξ̃), Y = û = ℘(ξ̂) and Z = ̂̃u = ℘(
̂̃
ξ), and using

℘(ξ)− ℘(η) =
σ(η + ξ)σ(η − ξ)

σ2(η)σ2(ξ)
, (3.7)

it is not hard to see that the elliptic identity (3.5) relates the rational form of Adler’s

equation in the Weierstrass case (1.2) and 3-leg (3.4a). Since the Adler system (1.2) is

manifestly invariant under the replacements u ↔ ̂̃u, α ↔ β – whilst not interchanging ũ

and û – (this being a particular aspect of the D4-symmetry of the equation), the 3-leg

form (3.4a) is also invariant under the parallel exchange on the level of the uniformising

variables: ξ ↔ ̂̃
ξ, α ↔ β. This is the symmetry that connects the two forms (3.4a) and

(3.4b), which are hence equivalent.

Remark 1: The coefficients λ and µ are determined by the condition that the dynamical

equation for the determinants of the Lax matrices Lκ, Mκ need to be trivially satisfied.

Thus a possible choice for λ and µ is to determine these factors such that det(Lκ) and

det(Mκ) are proportional to constants (i.e. independent of ξ), which leads to the following

expressions

λ =

(
H(u, ũ, a)

AUŨ

)1/2

, µ =

(
H(u, û, b)

BUÛ

)1/2

, (3.8)

where u = ℘(ξ) , U = r(u) = ℘′(ξ), and similary ũ = ℘(ξ̃) , Ũ = r(ũ) = ℘′(ξ̃), and

û = ℘(ξ̂) , Û = r(û) = ℘′(ξ̂). The symmetric triquadratic function H is given by

H(u, v, a) ≡
(
uv + au+ av +

g2
4

)2
− (4auv − g3)(u+ v + a) , (3.9)

and which can be obtained in the following form in terms of σ-function

H(u, v, a) = (u− v)2

[
1

4

(
U − V

u− v

)2

− (u+ v + a)

][
1

4

(
U + V

u− v

)2

− (u+ v + a)

]

=
σ(ξ + η + α)σ(ξ + η − α)σ(ξ − η + α)σ(ξ − η − α)

σ4(ξ)σ4(η)σ4(α)
, (3.10)

in which U2 ≡ r(u), V 2 ≡ r(v). We also have the expression in terms of the polynomial

of the curve:

[
r(u) + r(a)− 4(u− a)2(u+ v + a)

]2 − 4r(u) r(a) = 16(u − a)2H(u, v, a) . (3.11)
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We further note at this point that the discriminant of the triquadratic in each argument

factorises:

H2
v − 2H Hvv = r(a)r(u) . (3.12)

In [4] the discriminant properties of affine-linear quadrilaterals and their relation with the

corresponding biquadratics and their discriminants, were exploited to tighten the classifi-

cation result of [3].

Remark 2: An alternative derivation of the N = 2 case can be given by using the system

of equations (2.9). In this case the variables Hl and Kl take on the following forms, setting

ξ1 = −ξ2 = ξ:

H1 =
σ(ξ̂ − ̂̃ξ + α)σ(ξ̂ +

̂̃
ξ + α)σ(ξ̂ − ξ − β)σ(ξ̂ + ξ − β)

σ(ξ̂ − ξ̃ − γ)σ(ξ̂ + ξ̃ − γ)σ(2ξ̂)
, (3.13a)

H2 =
σ(−ξ̂ − ̂̃ξ + α)σ(−ξ̂ +

̂̃
ξ + α)σ(−ξ̂ − ξ − β)σ(−ξ̂ + ξ − β)

σ(−ξ̂ − ξ̃ − γ)σ(−ξ̂ + ξ̃ − γ)σ(−2ξ̂)
, (3.13b)

K1 =
σ(ξ̃ − ̂̃ξ + β)σ(ξ̃ +

̂̃
ξ + β)σ(ξ̃ − ξ − α)σ(ξ̃ + ξ − α)

σ(ξ̃ − ξ̂ + γ)σ(ξ̃ + ξ̂ + γ)σ(2ξ̃)
, (3.13c)

K2 =
σ(−ξ̃ − ̂̃ξ + β)σ(−ξ̃ +

̂̃
ξ + β)σ(−ξ̃ − ξ − α)σ(−ξ̃ + ξ − α)

σ(−ξ̃ − ξ̂ + γ)σ(−ξ̃ + ξ̂ + γ)σ(−2ξ̃)
, (3.13d)

The identity H1 +H2 = 0 upon inserting the above expressions yield the equation:

[
σ(ξ̃ + ξ + α)σ(ξ̃ − ξ − α)

σ(ξ̃ + ξ − α)σ(ξ̃ − ξ + α)

]̂
σ(ξ̂ + ξ − β)σ(ξ̂ − ξ − β)

σ(ξ̂ + ξ + β)σ(ξ̂ − ξ + β)
=

σ(ξ̃ + ξ̂ − γ)σ(ξ̃ − ξ̂ + γ)

σ(ξ̃ − ξ̂ − γ)σ(ξ̃ + ξ̂ + γ)
,

(3.14)

which is equivalent to the elliptic lattice system (1.2) under the same changes of variables as

discussed before. In fact, (3.14) can be obtained from (3.4a) by interchanging: ξ ↔ ξ̂ and

̂̃
ξ ↔ ξ̃ . Similarly, the identity K1 + K2 = 0 upon inserting the expressions (3.13c) and

(3.13d) forK1 andK2 yields a similar equation to (3.14) which can be obtained from (3.4a)

by interchanging: ξ ↔ ξ̃ and
̂̃
ξ ↔ ξ̂ . Thus, we recover from the scheme proposed in the

previous section the Adler system in the various 3-leg forms based at different vertices of

the elementary quadrilateral.
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3.2 Case N=3:

To generalise the results in the previous subsection to the rank 3 case, we consider the

following form of a Lax representation on the lattice:

χ̃ =




h1Φ3κ(ξ̃1 − ξ1 − α) h2Φ3κ(ξ̃1 − ξ2 − α) h3Φ3κ(ξ̃1 − ξ3 − α)

h1Φ3κ(ξ̃2 − ξ1 − α) h2Φ3κ(ξ̃2 − ξ2 − α) h3Φ3κ(ξ̃2 − ξ3 − α)

h1Φ3κ(ξ̃3 − ξ1 − α) h2Φ3κ(ξ̃3 − ξ2 − α) h3Φ3κ(ξ̃3 − ξ3 − α)


χ ,

(3.15a)

χ̂ =




k1Φ3κ(ξ̂1 − ξ1 − β) k2Φ3κ(ξ̂1 − ξ2 − β) k3Φ3κ(ξ̂1 − ξ3 − β)

k1Φ3κ(ξ̂2 − ξ1 − β) k2Φ3κ(ξ̂2 − ξ2 − β) k3Φ3κ(ξ̂2 − ξ3 − β)

k1Φ3κ(ξ̂3 − ξ1 − β) k2Φ3κ(ξ̂3 − ξ2 − β) k3Φ3κ(ξ̂3 − ξ3 − β)


χ ,

(3.15b)

subject to
∑3

i=1 hi =
∑3

i=1 ki = 0 , and where the coefficients hj , kj are some functions

of the variables ξj, and of their shifts. The compatibility conditions (2.4) of this Lax pair

results in a coupled set of Lax equations in terms of the three variables ξj as we shall

demonstrate by performing a similar type of analysis as in the case N = 2, which in this

case is understandably more involved.

Eliminating2, h3 = −h1 − h2 and k3 = −k1 − k2 we obtain from (2.7b) the following

system of equations:

2∑

l=1

ĥlkj

[
ζ(
̂̃
ξi − ξ̂l − α) + ζ(ξ̂l − ξj − β)− ζ(

̂̃
ξi − ξ̂3 − α)− ζ(ξ̂3 − ξj − β)

]

=
2∑

l=1

k̃lhj

[
ζ(
̂̃
ξi − ξ̃l − β) + ζ(ξ̃l − ξj − α)− ζ(

̂̃
ξi − ξ̃3 − β)− ζ(ξ̃3 − ξj − α)

]

∀ i, j = 1, 2, 3. (3.16)

and using the addition formula (2.5) we next get:

2∑

l=1

ĥlkj
σ(
̂̃
ξi − ξ̂l − ξ̂3 + ξj − α+ β)σ(ξ̂l − ξ̂3)

σ(
̂̃
ξi − ξ̂l − α)σ(ξ̂l − ξj − β)σ(

̂̃
ξi − ξ̂3 − α)σ(ξ̂3 − ξj − β)

=

=

2∑

l=1

k̃lhj
σ(
̂̃
ξi − ξ̃l − ξ̃3 + ξj + α− β)σ(ξ̃l − ξ̃3)

σ(
̂̃
ξi − ξ̃l − β)σ(ξ̃l − ξj − α)σ(

̂̃
ξi − ξ̃3 − β)σ(ξ̃3 − ξj − α)

∀ i, j = 1, 2, 3. (3.17)

2Equivalently, we could have eliminated h1 or h2 and k1 or k2 yielding equivalent results.
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To write (3.17) in a more concise way, we denote the coefficients on the l.h.s. and r.h.s. of

the equation as Ailj ≡ Ailj(
̂̃
ξ, ξ̂, ξ;α, β) and Bilj ≡ Bilj(

̂̃
ξ, ξ̃, ξ;α, β) respectively. Noting

the common factors hj/kj (j = 1, 2, 3) in these equations, we next derive the system of

six equations

hj
kj

=
A11j ĥ1 +A12j ĥ2

B11j k̃1 +B12j k̃2
=

A21j ĥ1 +A22j ĥ2

B21j k̃1 +B22j k̃2
=

A31j ĥ1 +A32j ĥ2

B31j k̃1 +B32j k̃2

(j = 1, 2, 3) . (3.18)

We can rewrite the resulting set of relation (3.18) as

(A11jB21j −A21jB11j)ĥ1k̃1 + (A11jB22j −A21jB12j)ĥ1k̃2

+(A12jB21j −A22jB11j)ĥ2k̃1 + (A12jB22j −A22jB12j)ĥ2k̃2 = 0

(A11jB31j −A31jB11j)ĥ1k̃1 + (A11jB32j −A31jB12j)ĥ1k̃2

+(A12jB31j −A32jB11j)ĥ2k̃1 + (A12jB32j −A32jB12j)ĥ2k̃2 = 0

(A21jB31j −A31jB21j)ĥ1k̃1 + (A21jB32j −A31jB22j)ĥ1k̃2

+(A22jB31j −A32jB21j)ĥ2k̃1 + (A22jB32j −A32jB22j)ĥ2k̃2 = 0

(j = 1, 2, 3) , (3.19)

where

Ailj =
σ(
̂̃
ξi − ξ̂l − ξ̂3 + ξj − α+ β)σ(ξ̂l − ξ̂3)

σ(
̂̃
ξi − ξ̂l − α)σ(ξ̂l − ξj − β)σ(

̂̃
ξi − ξ̂3 − α)σ(ξ̂3 − ξj − β)

, (3.20a)

Bilj =
σ(
̂̃
ξi − ξ̃l − ξ̃3 + ξj + α− β)σ(ξ̃l − ξ̃3)

σ(
̂̃
ξi − ξ̃l − β)σ(ξ̃l − ξj − α)σ(

̂̃
ξi − ξ̃3 − β)σ(ξ̃3 − ξj − α)

. (3.20b)

We observe that these homogeneous bilinear systems for the variables ĥ1, k̃1, ĥ2 and k̃2

can be resolved by using Cayley’s 3-dimensional 2 × 2 × 2-hyperdeterminant [9]. Let us

recall the general statement (cf. also [12]):

Definition 3.1. The hyperdeterminant of 2×2×2 hyper-matrix A = (aijk) (i, j, k = 0, 1)
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is given by:

Det(A) =
[
det


a000 a001

a110 a111


+ det


a100 a010

a101 a011



]2

− 4 det


a000 a001

a010 a011


 det


a100 a101

a110 a111


 . (3.21)

Its main property is the following:

Proposition 3.2. The hyper-determinant (3.21) vanishes identically iff the following set

of bilinear equations with six unknowns

a001x0y0 + a011x0y1 + a101x1y0 + a111x1y1 = 0,

a000x0y0 + a010x0y1 + a100x1y0 + a110x1y1 = 0,

a010x0z0 + a011x0z1 + a110x1z0 + a111x1z1 = 0,

a000x0z0 + a001x0z1 + a100x1z0 + a101x1z1 = 0,

a100y0z0 + a101y0z1 + a110y1z0 + a111y1z1 = 0,

a000y0z0 + a001x0z1 + a010y1z0 + a011y1z1 = 0, (3.22)

has a non-trivial solution (i.e., for which none of the vectors x = (x0, x1), y = (y0, y1),

z = (z0, z1) are equal to the zero vector).

A proof of this statement can be found in [21]. The cubic hyper-matrix A can be

illustrated by the following diagram of entries

a110

a000

a011

a010

a101a001

a100

a111

Figure 3: Cayley Cube
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In the case at hand, the components aijk can be readily identified by comparing (3.19)

with the system (3.22) and the variables xi, yj with the ĥi and k̃j respectively. Noting

that these particular coefficients are all 2× 2 determinants, it turns out that the following

compound theorem for hyper-determinants is directly applicable.

Lemma 3.1 (Compound Theorem for 2×2×2 hyper-determinants). The following identity

holds for the compound hyper- determinants of format 2× 2× 2:

(

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣
a a′′

b b′′

∣∣∣∣∣∣

∣∣∣∣∣∣
a′ a′′

d′ d′′

∣∣∣∣∣∣
∣∣∣∣∣∣
c c′′

b b′′

∣∣∣∣∣∣

∣∣∣∣∣∣
c′ c′′

d′ d′′

∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣
a′ a′′

b′ b′′

∣∣∣∣∣∣

∣∣∣∣∣∣
a a′′

d d′′

∣∣∣∣∣∣
∣∣∣∣∣∣
c′ c′′

b′ b′′

∣∣∣∣∣∣

∣∣∣∣∣∣
c c′′

d d′′

∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

)2

−4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣
a a′′

b b′′

∣∣∣∣∣∣

∣∣∣∣∣∣
a a′′

d d′′

∣∣∣∣∣∣
∣∣∣∣∣∣
c c′′

b b′′

∣∣∣∣∣∣

∣∣∣∣∣∣
c c′′

d d′′

∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣
a′ a′′

b′ b′′

∣∣∣∣∣∣

∣∣∣∣∣∣
a′ a′′

d′ d′′

∣∣∣∣∣∣
∣∣∣∣∣∣
c′ c′′

b′ b′′

∣∣∣∣∣∣

∣∣∣∣∣∣
c′ c′′

d′ d′′

∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣
a a′′

c c′′

∣∣∣∣∣∣

∣∣∣∣∣∣
b b′′

d d′′

∣∣∣∣∣∣
∣∣∣∣∣∣
a′ a′′

c′ c′′

∣∣∣∣∣∣

∣∣∣∣∣∣
b′ b′′

d′ d′′

∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

.

(3.23)

Proof. This can be established by direct computation. Assuming w.l.o.g. that the entries

a′′, b′′,c′′.d′′ are all nonzero, we can take out the common product (a′′b′′c′′d′′)2 from all

terms on the left-hand side. Denoting all the ratios a/a′′, a′/a′′ by capitals A, A′ etc., and

noting that the 2× 2 determinant

∣∣∣∣∣∣
a/a′′ 1

b/b′′ 1

∣∣∣∣∣∣
is simply given by A−B (and in a similar

way the other determinants occurring in the expression on the left-hand side), then the

left-hand side of (3.23) is representable by

a′′2 b′′2 c′′2 d′′2

[( ∣∣∣∣∣∣
A−B A′ −D′

C −B C′ −D′

∣∣∣∣∣∣
+

∣∣∣∣∣∣
A′ −B′ A−D

C′ −B′ C −D

∣∣∣∣∣∣

)2

−4

∣∣∣∣∣∣
A−B A−D

C −B C −D

∣∣∣∣∣∣
.

∣∣∣∣∣∣
A′ −B′ A′ −D′

C′ −B′ C′ −D′

∣∣∣∣∣∣

]
.
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Computing the expression between brackets, we observe that it can be simplified to:

(
(A− C)(B′ −D′) + (D −B)(C ′ −A′)

)2 − 4(A− C)(B −D)(A′ − C ′)(B′ −D′)

=

∣∣∣∣∣∣
A− C B −D

A′ − C ′ B′ −D′

∣∣∣∣∣∣

2

,

which leads to the desired result.

This compound theorem to the best of our knowledge is a new result in the theory of

hyper-determinants. It seems intimately linked to the structure of the linear equations (the

Lax relations) from which it originate in the present context, and there may be analogues

for the case of higher rank hyper-determinants (this is currently under investigation). A

connection between hyper-determinants and minors of symmetric matrices was established

in [14], but it is not clear whether (and if so how) those results are related to the above

proposition.

Identifying the coefficients of the system of homogeneous equations (3.19) as entries

of a 2× 2× 2 hyper-determinant, we observe that the structure of this hyper-determinant

is exactly of the form as given in Lemma 3.1, and hence we have the following immediate

corollary.

Proposition 3.3. Identifying the 8 entries (aijk)i,j,k=0,1 by comparing the first two equa-

tions of (3.22) with the system of equations (3.19), the hyper-determinant takes the form

as given by the compound theorem Lemma 3.1, and hence reduces to a perfect square of

the form:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣
Ailj Ail′j

Ai′′lj Ai′′l′j

∣∣∣∣∣∣

∣∣∣∣∣∣
Ai′lj Ai′l′j

Ai′′lj Ai′′l′j

∣∣∣∣∣∣

∣∣∣∣∣∣
Bilj Bil′j

Bi′′lj Bi′′l′j

∣∣∣∣∣∣

∣∣∣∣∣∣
Bi′lj Bi′l′j

Bi′′lj Bi′′l′j

∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

(j = 1, 2, 3), (3.24)
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where
∣∣∣∣∣∣
Ailj Ail′j

Ai′′lj Ai′′l′j

∣∣∣∣∣∣
=

σ(ξ̂l − ξ̂3)σ(ξ̂l′ − ξ̂3)σ(ξ̂l − ξ̂l′)

σ(
̂̃
ξi − ξ̂l − α)σ(

̂̃
ξi − ξ̂l′ − α)σ(

̂̃
ξi′′ − ξ̂l − α)σ(

̂̃
ξi′′ − ξ̂l′ − α)

× σ(
̂̃
ξi −

̂̃
ξi′′)σ(

̂̃
ξi +

̂̃
ξi′′ − ξ̂l − ξ̂l′ − ξ̂3 + ξj − 2α+ β)

σ(
̂̃
ξi − ξ̂3 − α)σ(

̂̃
ξi′′ − ξ̂3 − α)σ(ξ̂l − ξj − β)σ(ξ̂l′ − ξj − β)σ(ξ̂3 − ξj − β)

,

(3.25)

in which we can set i, i′ = 1, 2, l, l′ = 1, 2 6= 3, and where we naturally should take i′′ = 3.

A similar expression for the corresponding determinant in terms of the Bilj as given (3.25)

interchanging α and β and the shifts ˜ and ̂ .

The form (3.25) of the relevant 2 × 2 determinants, using the expressions for the entries

(3.20), is computed in Appendix C.

We apply now the compound theorem Lemma 3.1 to the system of homogeneous equa-

tions (3.19). In fact from that system of equations it follows that the ratios ĥi/ĥj and

k̃i/k̃j obey quadratic equations whose discriminant, by virtue of the compound theorem,

is a perfect square. Thus, those ratios can be obtained in a rather simple form. We distin-

guish between the two cases: i) the hyper-determinant in question, i.e. the determinant

(3.24), vanishes, and ii) the hyper-determinant is non-zero.

i) Case (3.24)= 0

In this case the resulting set of equations is given by the vanishing of the hyper-determinant,

i.e. the set of equations:

∣∣∣∣∣∣
Ailj Ail′j

Ai′′lj Ai′′l′j

∣∣∣∣∣∣

∣∣∣∣∣∣
Bi′lj Bi′l′j

Bi′′lj Bi′′l′j

∣∣∣∣∣∣
=

∣∣∣∣∣∣
Ai′lj Ai′l′j

Ai′′lj Ai′′l′j

∣∣∣∣∣∣

∣∣∣∣∣∣
Bilj Bil′j

Bi′′lj Bi′′l′j

∣∣∣∣∣∣
(3.26)
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Inserting the explicit expression (3.25), and its counterpart in terms of the quantities Bilj ,

into (3.26) we obtain the relations

σ(
̂̃
ξi +

̂̃
ξi′′ − ξ̂l − ξ̂l′ − ξ̂3 + ξj + β − 2α)

σ(
̂̃
ξi′ +

̂̃
ξi′′ − ξ̂l − ξ̂l′ − ξ̂3 + ξj + β − 2α)

σ(
̂̃
ξi′ − ξ̂l − α)σ(

̂̃
ξi′ − ξ̂l′ − α)σ(

̂̃
ξi′ − ξ̂3 − α)

σ(
̂̃
ξi − ξ̂l − α)σ(

̂̃
ξi − ξ̂l′ − α)σ(

̂̃
ξi − ξ̂3 − α)

=
σ(
̂̃
ξi +

̂̃
ξi′′ − ξ̃l − ξ̃l′ − ξ̃3 + ξj + α− 2β)

σ(
̂̃
ξi′ +

̂̃
ξi′′ − ξ̃l − ξ̃l′ − ξ̃3 + ξj + α− 2β)

σ(
̂̃
ξi′ − ξ̃l − β)σ(

̂̃
ξi′ − ξ̃l′ − β)σ(

̂̃
ξi′ − ξ̃3 − β)

σ(
̂̃
ξi − ξ̃l − β)σ(

̂̃
ξi − ξ̃l′ − β)σ(

̂̃
ξi − ξ̃3 − β)

(j = 1, 2, 3) , (3.27)

where again we can set i, i′ = 1, 2, l, l′ = 1, 2 6= 3, and where we naturally should take

i′′ = 3. The set of relations (3.27) is a coupled system of three quadrilateral equations (for

j = 1, 2, 3) of 3-leg type, i.e. in terms of three independent variables which reside in the

arguments of the Weierstrass σ-functions3. We note that all three equations (for j = 1, 2, 3)

have a common factor, which in the case of a further reduction ξ1+ξ2+ξ3 = 0(mod period

lattice) involves only the ”long legs” (i.e. the differences over the diagonal). Thus, this

system of equations may be too simple to figure as a proper candidate for a higher-rank

analogue of the Adler lattice equation.

ii) Case (3.24) 6= 0

As a consequence of the compound theorem, Lemma 3.1, the hyper-determinant in the

case at hand is a perfect square. Thus, going back to the system (3.19), by first eliminating

the ratio ĥi/ĥj , we obtain a quadratic for the ratio k̃i/k̃j , (i, j = 1, 2) from which the latter

can be solved using the fact that the discriminant of the quadratic (which coincides with

the hyper-determinant) is a perfect square. Thus, we get rather manageable expressions

for the solutions of the mentioned ratios in terms of the 2× 2 determinants involving the

expressions Ailj and Bilj . The result of this computation is the following:

Proposition 3.4. If the expression (3.24) is non-vanishing, we have the following solu-

tions of the system (3.19) given in terms of the ratios (i.e., up to a common multiplicative

3An equivalent system of equations would have been obtained if, rather than eliminating h3 and k3 in

its derivation, we would have eliminated one of the other variables among the coefficients hl and kl.
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factor)

either
ĥ1

ĥ2
= −A32j

A31j
together with

k̃1

k̃2
= −B32j

B31j
, (3.28a)

or
ĥ1

ĥ2
= −

∣∣∣∣∣∣∣∣∣

B11j A12j B12j

B21j A22j B22j

B31j A32j B32j

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

B11j A11j B12j

B21j A21j B22j

B31j A31j B32j

∣∣∣∣∣∣∣∣∣

together with
k̃1

k̃2
= −

∣∣∣∣∣∣∣∣∣

A11j A12j B12j

A21j A22j B22j

A31j A32j B32j

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

A11j A12j B11j

A21j A22j B21j

A31j A32j B31j

∣∣∣∣∣∣∣∣∣

.

(j = 1, 2, 3) (3.28b)

The proof, once again, is by direct computation and involves some determinantal manip-

ulations.

The system of equations resulting from (3.28a), inserting the explicit expressions for

the quantities A and B from (3.20) reads as follows

ĥ1

ĥ2
= −σ(

̂̃
ξ3 − ξ̂2 − ξ̂3 + ξj − α+ β)σ(

̂̃
ξ3 − ξ̂1 − α)σ(ξ̂1 − ξj − β)σ(ξ̂2 − ξ̂3)

σ(
̂̃
ξ3 − ξ̂1 − ξ̂3 + ξj − α+ β)σ(

̂̃
ξ3 − ξ̂2 − α)σ(ξ̂2 − ξj − β)σ(ξ̂1 − ξ̂3)

, (3.29a)

and

k̃1

k̃2
= −σ(

̂̃
ξ3 − ξ̃2 − ξ̃3 + ξj + α− β)σ(

̂̃
ξ3 − ξ̃1 − β)σ(ξ̃1 − ξj − α)σ(ξ̃2 − ξ̃3)

σ(
̂̃
ξ3 − ξ̃1 − ξ̃3 + ξj + α− β)σ(

̂̃
ξ3 − ξ̃2 − β)σ(ξ̃2 − ξj − α)σ(ξ̃1 − ξ̃3)

. (3.30a)

(j = 1, 2, 3)

Inserting the expressions of (3.20) into the system of equations (comprising the equations

for different values of j = 1, 2, 3) (3.28b) yields a more complicated system of quadrilateral

elliptic 3-leg type of equations, which we have so far not been able to simplify4. The

problem of finding a rational form for the system of equations, as well as verifying their

reducibility under the additional constraint ξ1+ξ2+ξ3 = 0(mod period lattice) is currently

under investigation. We believe that the latter system of equations may correspond to

the proper higher-rank analogue of Adler’s lattice equation, but further work is needed to

underpin that assertion.

4Note that the 3×3 determinants in (3.28b) are almost, but not quite, of Frobenius (i.e., elliptic Cauchy)

type.

21



Remark

In this paper we have proposed higher-rank lattice systems which by the construction we

think of as natural analogues of Adler’s lattice equation in 3-leg form. It is desirable to find

their rational forms, similar to those of the Adler equation, i.e., either in the Weierstrass

case given by (1.2) or in the Jacobi case (1.8), because in those forms the D4 symmetries

of the equation are manifest. We mention here that the Jacobi form of Adler’s equation

(1.8) can be written in a remarkably succinct way using spin vectors.

Introducing a “spin matrix” in the following way:

Gσ3 G
−1 = S · σ , where G =


 1 1

u v


 , (3.31)

using the basis of the standard Pauli matrices σ = (σ1, σ2, σ3), we can identify a (nor-

malised) spin vector as

S(u, v) =
1

v − u
(uv − 1,−i(uv + 1), u + v) , |S|2 = S · S = 1 . (3.32)

Such a spin representation has been used in connection with the Landau-Lifschitz equa-

tions, cf. e.g. [2]. We have now the following statement:

Proposition 3.5. Adler’s lattice equation in Jacobi form, i.e. (1.8), can be represented

in the following spin form:

J0 + S(v, ṽ) · JS(v̂, ̂̃v) = 0 , (3.33)

in which the coefficient (anisotropy parameters) comprising J0 and the 3 × 3 diagonal

matrix J = diag(J1, J2, J3) are given by

J0 =
q − r

2
, J1 = p

1− qr

2
, J2 = p

1 + qr

2
, J3 =

q + r

2
, (3.34)

with r = (pQ− qP )/(1 − p2q2).

The proof is by direct computation, writing out the components and identifying the

various combinations of terms with the ones occurring in (1.8). Obviously, the particular

way (3.33) of writing the equation is not unique: it is subject to the D4 symmetries of the
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quadrilateral both in how the spin variables depend on the variables v on the vertices and

in how the anisotropy parameters depend on the lattice parameters.

This observation suggests that the search for a rational form of higher-rank Adler

lattice systems may involve higher spin variables, which are constructed in the following

way. Using a basis of GL3 given by the set of matrices5 {In1,n2 |n1, n1 ∈ Z3}, where

In = In1,n2 := Σn1Ωn2 = ωn1n2Ωn2Σn1 are defined in terms of the elementary matrices

Ω =




1

ω

ω2


 , Σ =




0 1 0

0 0 1

1 0 0




and where ω is the 3d root of unity, ω = exp(2πi/3). These matrices obey the following

relation

In Im = ω−n2m1In+m , with n,m ∈ Z
2
3 , and I†

n
= ω−n1n2I−n .

where the † means Hermitian conjugation. Thus, introducing the (traceless) spin matrix

S :=
∑

n∈Z2
3

n 6=(0,0)

Sn·In = GΩG−1 , with G =




1 1 1

u1 v1 w1

u2 v2 w2


 , Ω =




1

ω

ω2


 ,

which is normalised through identity S3 = 1, we can identify an 8-component spin vector

S = (Sn1,n2):

in terms of the a 8-component vector S = (Sn1,n2) where n1, n2 = 0, 1, 2, (n1, n2) 6=
(0, 0), whose entries can be identified in the following way:

S =
1

u · (v ×w)
(u,v,w)Ω




(v ×w)T

(w × u)T

(u× v)T


 ,

from which the 8 spin components Sn1,n2 = Sn1,n2(u,v,w), (n1, n2 ∈ Z3, (n1, n2) 6= (0, 0)),

can be inferred comparing the entries of the matrices on the left-hand and right-hand

sides. We aim at exploring the possibility of writing the higher-rank lattice systems in

this representation.

5Following [7] this can obviously be readily generalized to the case of GLN .

23



4 Discussion

In this paper we have proposed and investigated a general class of higher-rank elliptic Lax

representations for systems of partial difference equations on the 2D lattice. Distinguishing

between what we called spin-zero (generalizations of Adler’s lattice equation) and spin-

nonzero (generalized landau-Lifschitz type) models, we gave the general structure of the

resulting equations (from the compatibility conditions) for the latter, but concentrated

mainly on the former case for N = 2 and N = 3. For N = 2 we have shown that the Lax

systems leads indeed to Adler’s lattice equation in its 3-leg form (for the Weierstrass class)

and we have analysed how these results generalize to the case N = 3 (as a representative

example for the higher-rank case). Having established the resulting systems of equations,

generalizing Adler’s 3-leg form, further work is needed to properly identify those systems.

Thus, in further study we will investigate their rational and hyperbolic degenerations, as

well as their continuum limits. A possible outcome would be to establish a connection with

a differential system obtained by O. Mokhov in the 1980s, [20], arising from third order

commuting differential operators defining rank 3 vector bundles over an elliptic curve, cf.

[19].

In our view, the significance of the results of this paper is not only to add a new class

of elliptic type of integrable systems to our already substantial zoo of such systems, but

to depart from the rather restrictive confinement of 2× 2 systems to which all ABS type

systems, [3], belong. To obtain good insights in the essential structures behind (discrete

and continuous) integrable systems, such departures into the multi-component cases are

necessary. In the present paper we concentrated mostly on the spin-zero case, while the

elaboration of the spin non-zero case is the subject of a future publication, some initial

results of which were already presented in [22]. As a direction for the future, establishing

connections, if any, with the recently found master-solutions of the quantum Yang-Baxter

equations, [6], may be of interest.
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A Proof of the Q4 3-leg identity

The proof of the elliptic identity (3.5) can be achieved directly by showing that the coeffi-

cients of each monomials 1,X, Y, Z,XY,XZ, Y Z and XY Z of the identity are equivalent.

By expanding the left-hand side of the identity as

LHS := (1− t2)XY Z + (t2℘(ξ − α)− ℘(ξ + α))Y Z + (t2℘(ξ + β)− ℘(ξ − β))XZ

+ (t2℘(ξ + α− β)− ℘(ξ − α+ β))XY + (℘(ξ − β)℘(ξ − α+ β)

− t2℘(ξ + β)℘(ξ + α− β))X + (℘(ξ + α)℘(ξ − α+ β)− t2℘(ξ − α)℘(ξ + α− β))Y

+ (℘(ξ + α)℘(ξ − β)− t2℘(ξ − α)℘(ξ + β))Z + t2℘(ξ − α)℘(ξ + α− β)℘(ξ + β)

− ℘(ξ + α)℘(ξ − β)℘(ξ − α+ β) , (A.35)

it is obvious that the first term of line 1 is equal to the corresponding term on the right

hand-side of (3.5). The rest of the equalities of the corresponding coefficients follow by

the same method as explained below. First, we make use of the Frobenius-Stickelberger

formula [10] stated in Appendix B, in terms of the variables (ξ, α,−β)

∣∣∣∣∣∣∣∣∣

1 ℘(ξ) ℘′(ξ)

1 ℘(α) ℘′(α)

1 ℘(−β) ℘′(−β)

∣∣∣∣∣∣∣∣∣
= 2

σ(ξ + α− β)σ(ξ − α)σ(α + β)σ(ξ + β)

σ3(ξ)σ3(α)σ3(β)
,

and a similar relation with (ξ,−α, β). If we divide the former determinant by the latter

one, we obtained the following expression for t and s in (3.6)

t =
℘′(ξ)(b− a)−Ab− aB + ℘(ξ)(A +B)

℘′(ξ)(b− a) +Ab+ aB − ℘(ξ)(A +B)
, s =

4(a− b)℘′(ξ)

(℘′(ξ)(b − a) +Ab+ aB − ℘(ξ)(A+B))2
.

25



Applying the elliptic addition formulae of the form, notably:

℘(ξ) + ℘(η) + ℘(ξ ± η) =
1

4

(
℘′(ξ)∓ ℘′(η)

℘(ξ)− ℘(η)

)2

, (A.36)

on (A.35), we get on the one hand

LHS = (1− t2)XY Z + (a+ ℘(ξ)− (℘′(ξ)−A)2

4(℘(ξ) − a)2
+ t2(−a− ℘(ξ) +

(℘′(ξ) +A)2

4(℘(ξ)− a)2
))Y Z

+ (b+ ℘(ξ)− (℘′(ξ) +B)2

4(℘(ξ) − b)2
+ t2(−b− ℘(ξ) +

(℘′(ξ −B)2

4(℘(ξ)− b)2
))XZ

+ (c+ ℘(ξ)− (℘′(ξ)− C)2

4(℘(ξ) − c)2
+ t2(−c− ℘(ξ) +

(℘′(ξ) + C)2

4(℘(ξ) − c)2
))XY

+ ((−a− ℘(ξ) +
(℘′(ξ)−A)2

4(℘(ξ)− a)2
)(−b− ℘(ξ) +

(℘′(ξ) +B)2

4(℘(ξ) − b)2
)

− t2((−a− ℘(ξ) +
(℘′(ξ) +A)2

4(℘(ξ) − a)2
)(−b− ℘(ξ) +

(℘′(ξ)−B)2

4(℘(ξ)− b)2
)))Z

+ ((−a− ℘(ξ) +
(℘′(ξ)−A)2

4(℘(ξ)− a)2
)(−c− ℘(ξ) +

(℘′(ξ)− C)2

4(℘(ξ)− c)2
)

− t2((−a− ℘(ξ) +
(℘′(ξ) +A)2

4(℘(ξ) − a)2
)(−c− ℘(ξ) +

(℘′(ξ) + C)2

4(℘(ξ)− c)2
)))Y

+ ((−b− ℘(ξ) +
(℘′(ξ) +B)2

4(℘(ξ) − b)2
)(−c− ℘(ξ) +

(℘′(ξ)− C)2

4(℘(ξ)− c)2
)

− t2((−b− ℘(ξ) +
(℘′(ξ)−B)2

4(℘(ξ) − b)2
)(−c− ℘(ξ) +

(℘′(ξ) +C)2

4(℘(ξ) − c)2
)))X

+ ((a+ ℘(ξ)− (℘′(ξ)−A)2

4(℘(ξ) − a)2
)(−b− ℘(ξ) +

(℘′(ξ) +B)2

4(℘(ξ)− b)2
)(−c− ℘(ξ)

+
(℘′(ξ)− C)2

4(℘(ξ)− c)2
) + t2((−a− ℘(ξ) +

(℘′(ξ) +A)2

4(℘(ξ) − a)2
)(−b− ℘(ξ)

+
(℘′(ξ)−B)2

4(℘(ξ)− b)2
)(−c− ℘(ξ) +

(℘′(ξ) + C)2

4(℘(ξ)− c)2
))). (A.37)

The proof is completed by using the relations (1.5) and subsequently (1.3), (1.4) on the

terms of (A.37) and as well as on the right hand-side of (3.5).

B Frobenius-Stickelberger type identities

Here we collect a number of results related to elliptic determinantal formulae of Frobenius

and Frobenius-Stickelberger type (i.e. elliptic Cauchy and Vandermonde determinants).
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The Frobenius-Stickelberger formula, [10] is given by

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ℘(x1) ℘′(x1) · · · ℘(n−2)(x1)

1 ℘(x2) ℘′(x2) · · · ℘(n−2)(x2)

1 ℘(x3) ℘′(x3) · · · ℘(n−2)(x3)
...

...
...

. . .
...

1 ℘(xn) ℘′(xn) · · · ℘(n−2)(xn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)(n−1)(n−2)/2 1!2!3!...(n − 1)!
σ(x1 + x2 + ...+ xn)

∏n
i<j=1 σ(xi − xj)∏n

i=1 σ
n(xi)

(B.1)

Denoting the Frobenius-Stickelberger matrix P(x0, x1, . . . , xn) = P(x) by:

P(x) =




1 ℘(x1) ℘′(x1) · · · ℘(n−2)(x1)

1 ℘(x2) ℘′(x2) · · · ℘(n−2)(x2)

1 ℘(x3) ℘′(x3) · · · ℘(n−2)(x3)
...

...
...

. . .
...

1 ℘(xn) ℘′(xn) · · · ℘(n−2)(xn)




(B.2)

we have by using Cramer’s rule the following factorisation formula:

[
P(x) · P(y)−1

]
i,j

=
1

σn(xi)
ΦΣ(xi − yj)σ

n(yj)

∏n
l=1 σ(xi − yl)∏
l 6=j σ(yj − yl)

, (B.3)

in which Σ ≡ Σn
l=1 yl . As a consequence we obtain from this the Frobenius determinantal

formula, [11]

det (Φκ(xi − yj))i,j=1,...,N =
σ(κ+Σ)

σ(κ)

∏
i<j σ(xi − xj)σ(yj − yi)∏

i,j σ(xi − yj)
, Σ :=

N∑

i=1

(xi − yi) .

(B.4)

Conversely, the Frobenius-Stickelberger formula (B.1) can be obtained from the Frobenius

formula by a set of degenerate limits. The elliptic Lagrange interpolation formulae

N∏

i=1

σ(ξ − xi)

σ(ξ − yi)
=

N∑

i=1

Φ−Σ(ξ − yi)

∏N
j=1 σ(yi − xj)

∏N
j=1
j 6=i

σ(yi − yj)
, (B.5)

which holds if Σ 6= 0, and if Σ = 0:

N∏

i=1

σ(ξ − xi)

σ(ξ − yi)
=

N∑

i=1

[ζ(ξ − yi)− ζ(x− yi)]

∏N
j=1 σ(yi − xj)

∏N
j=1
j 6=i

σ(yi − yj)
, (B.6)

27



where x denotes any of the zeroes xi, (i = 1, . . . , N). Both (B.5) can be obtained from the

Frobenius formula [11] by row-or column expansions (adding an extra row and column to

the Frobenius matrix, say with x0 = ξ and y0 = η, and then expanding along that row or

column) and (B.6) can subsequently be obtained from a limiting case of the latter.

C Proof of Equation (3.25)

Here, we present the proof of the determinant in (3.25). By definition of Ailj given in

(3.20) we have
∣∣∣∣∣∣
Ailj Ail′j

Ai′lj Ai′l′j

∣∣∣∣∣∣
=

σ(ξ̂l − ξ̂3)σ(ξ̂l′ − ξ̂3)

S(
̂̃
ξi) S(

̂̃
ξi′ )σ(ξ̂l − ξj − β)σ(ξ̂l′ − ξj − β)σ2(ξ̂3 − ξj − β)

[
σ(
̂̃
ξi − ξ̂3 − ξ̂l + ξj − α+ β)σ(

̂̃
ξi′ − ξ̂3 − ξ̂l′ + ξj − α+ β)σ(

̂̃
ξi − ξ̂l′ − α)σ(

̂̃
ξi′ − ξ̂l − α)

−σ(
̂̃
ξi′ − ξ̂3 − ξ̂l + ξj − α+ β)σ(

̂̃
ξi − ξ̂3 − ξ̂l′ + ξj − α+ β)σ(

̂̃
ξi − ξ̂l − α)σ(

̂̃
ξi′ − ξ̂l′ − α)

]
,

(C.1)

where

S(ξ) = σ(ξ − ξ̂l − α)σ(ξ − ξ̂l′ − α)σ(ξ − ξ̂3 − α).

Noting that the difference in the bracket can be simplified by applying the three-term

relation for the σ-function in the following form:

σ(x− a)σ(y − b)σ(z − b)σ(w − a) − σ(y − a)σ(x− b)σ(z − a)σ(w − b)

= σ(z + y − a− b)σ(x− y)σ(x− z)σ(b − a), (C.2)

in which x− y = z − w. Making now the the following choice for x, y, z, w, a and b in

the identity (C.2):

x =
̂̃
ξi − ξ̂3 + ξj − α+ β y =

̂̃
ξi′ − ξ̂3 + ξj − α+ β

z =
̂̃
ξi − α w =

̂̃
ξi′ − α

a = ξ̂l b = ξ̂l′

the expression between brackets on the right-hand side of (C.1) simplifies to

[· · · ] = σ(−ξ̂3 + ξj + β) σ(
̂̃
ξi +

̂̃
ξi′ − ξ̂l − ξ̂l′ − ξ̂3 + ξj − 2α+ β) σ(

̂̃
ξi −

̂̃
ξi′) σ(ξ̂l′ − ξ̂l) . (C.3)
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Substituting the right-hand side of (C.3) into (C.1) and cancelling the first factor against

the corresponding factor in the prefactor of (C.1), using the fact that σ is an odd function,

we obtaine the desired result given by the determinant in (3.25). In a similar way (or by

making the obvious replacements α ↔ β and ˜ ↔ ̂ ) the computation of the 2 × 2

determinant Bilj can be verified.
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