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Abstract

We investigate the entanglement for a model of a particle moving in the lattice (many-body

system). The interaction between the particle and the lattice is modelled using Hooke’s law.

The Feynman path integral approach is applied to compute the density matrix of the system.

The complexity of the problem is reduced by considering two-body system (bipartite system).

The spatial entanglement of ground state is studied using the linear entropy. We find that

increasing the confining potential implies a large spatial separation between the two particles.

Thus the interaction between the particles increases according to Hooke’s law. This results

in the increase in the spatial entanglement.
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1. Introduction

Quantum theory is one of the most important branches in physics and is well-known for

being counter-intuitive and its bizarre phenomena (nothing like we experience in everyday

life). Quantum entanglement, which is the direct consequence of the EPR paradox [1, 2], is a

very unique phenomenon and has no classical counterparts. Since the discovery of quantum

entanglement, a wide range of applications has been proposed, i.e., quantum cryptography,

quantum teleportation and superdense coding [3, 4, 5, 6]. These applications indicate that

entanglement could be exploited to perform the impossible tasks which cannot be done by

classical computers. Another new branch of physics, which is called quantum information and
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computing, has been born by joining quantum physics and theoretical computer science. In

this respect many physical systems have been proposed as promising hardwares to perform

quantum information processors [7, 8, 9, 10, 11, 12, 13, 14]. For the solid state systems,

the main difficulty of studying is the complexity accounting to many-body configuration. The

approximation methods must be introduced to study interested physical properties, see [15, 16].

One of the most interesting systems in the context of solid state physics is the polaron

which was initiated by Landau [17], Pekar [18] and Frohlich [19]. Later, Feynman [20] offered a

new way, called path integrals, to study the physical properties, e.g., the ground state energy

and the effective mass [21] and references therein]. The main object in this method is the

propagator which is equivalent to the density matrix under the transformation from real time

to imaginary time [22, 23]. Unfortunately, the propagator for the polaron could not be exactly

computed and the approximation was needed. The trial system was introduced to replace the

actual system and the Lagrangian is given by [24, 25, 26, 27]

Lr,R =
m

2
ṙ2(τ)− V (r) +

N∑
i=1

(
M

2
Ṙ

2

i (τ)− MΩ2

2
R2
i (τ)

)

−κ
2

N∑
i=1

|r(τ)−Ri(τ)|2 , (1)

where r and Ri are the position vectors of the particle with mass m and the particles with mass

M , respectively. The Ω is the vibration frequency (This frequency can be connected with the

ambient temperature of the system) of the particles with mass M , κ is the coupling constant

and

V (r) =
m

2

[
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
]
,

is the confining potential: ωz = 0 for quantum wires and ωy = ωz = ω for quantum dots.

Interestingly, the system in Eq. (1) has long been studied, but no one has ever investigated the

quantum correlation, quantum entanglement, in such system, namely between the particle and

the lattice. To this contribution, we study the entanglement of the ground-state between the

particle and the lattice in Eq. (1) with some simplification (which will be described in the next

section). We will focus on the entanglement generated by the spatial degrees of freedom. The

linear entropy will be used to measure the amount of entanglement.

The organisation of this paper is the following. In section 2. we introduce the toy model: a

coupled harmonic oscillator and compute the density matrix. Then, the linear entropy will be
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Figure 1: The Lagrangian in Eq (1) describes a particle of mass m moving in the lattice which is

constituted from the particles of mass M . The interaction between the particle and the lattice is

modelled by Hook’s law. The external potential V (r) can be represented the shape of the matter as

we mentioned in the main text.

briefly discussed and will be used to quantify the spatial entanglement of the system in section

3. The last section will be devoted to summary and discussion.

2. The system

According to the complexity of the system in Eq. (1), quantum many-body approach is

needed to study the problem. Practically, the wave function of the particle interacting with

the lattice constitutes a Hilbert space H : |Ψ >∈ H = Hparticle ⊗Hlattice. The density matrix

is given by

ρ = |Ψ >< Ψ| . (2)

The reduced density matrix is obtained by tracing out the environment

ρ = |Ψ >< Ψ| , (3)

which is described part of a system which is the particle in this case. Alternatively, the Feyn-

man’s path integral approach provides another accessible way to tackle the problem and the

exact form of the propagator [29], which can indeed be used to find the wave function. Fur-

thermore, the density matrix of the system can be obtained directly from the propagator under

the transformation from the real time variable to the complex time variable.
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To compute the density matrix of the system in Eq. (1), we start to consider the propagator

of the composite system which is given by

Kr,R =
N∏
i=1

K(r(t),Ri(t), t; r(0),Ri(0), 0)

=

∫ r(t)

r(0)

D(r)
N∏
i=1

∫ Ri(t)

Ri(0)

D(Ri)e
i
h̄
S , (4)

where the action is given by

S =

∫ t

0

dτLr,R . (5)

We perform the transformation from the real time to the imaginary time: t → −iβ where

β = 1/kBT with h̄ = 1. The parameter T is the temperature and kB is the Boltzmann

constant [30]. Under this transformation,The propagator Eq. (4) becomes the density matrix.

ρr,R(r(β),R(β), β; r(0),R(0), 0) =

∫ r(β)

r(0)

D(r)
N∏
i=1

∫ Ri(β)

Ri(0)

D(Ri)e
−Sβ , (6)

where

Sβ =

∫ β

0

dτLr,R . (7)

The reduced density matrix can be obtained by tracing out the variable Ri of particles with

mass M that constitute the lattice[30, 31, 32].

ρr(r(β), r(0)) = TrRρr,R =

∫ r(β)

r(0)

D(r)
N∏
i=1

∫
dRi

∫ Ri

Ri

D(Ri)e
−Sβ

=

[
1

2 sinh(Ωeffβ/2)

]dN ∫ r(β)

r(0)

D(r)e−S
′
β , (8)

where

S ′β =

∫ β

0

dτ

(
m

2
ṙ2(τ)− V (r(τ))− Nκ

2
r2(τ)

)
− Nκ2

4MΩeff

∫ β

0

dτ

∫ β

0

dσ
cosh(Ωeff |τ − σ| − β/2)

sinh(Ωeffβ/2)
r(τ)r(σ) , (9)

Ω2
eff = Ω2 +

Nκ

M
. (10)

The variable d in Eq. (8) is the number of dimensions. To reduce the complexity of the

problem in Eq. (8), we will focus on a bipartite system consisting of one particle with mass
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Figure 2: The system of a coupled harmonic oscillator. The particle of mass M is fixed to its

equilibrium while the particle of mass m is free to move in one dimension (horizontal line). The

connection between these two particles is modelled through the spring interaction.

m and one particle with mass M (N = 1) in one dimension (d = 1). This simple system can

be treated as a coupled harmonic oscillator in one dimension as shown in Fig. 2. The particle

with mass M vibrates around its equilibrium with frequency Ω. The particle with mass m is

trapped in the harmonic potential V (x) = mω2x2/2 with frequency ω and also interacts with

mass M . The interaction between these two particles is modelled by Hooke’s law and κ denotes

the strength of the interaction. Now the density matrix in Eq. (8) becomes

ρx(x(β), x(0)) =

[
1

2 sinh(Ωeffβ/2)

] ∫ x(β)

x(0)

D(x)e−S
′
β , (11)

where

S ′β =

∫ β

0

dτ

(
m

2
ẋ2(τ)− mω2

2
x2(τ)− κ

2
x2(τ)

)
− κ2

4MΩeff

∫ β

0

dτ

∫ β

0

dσ
cosh(Ωeff |τ − σ| − β/2)

sinh(Ωeffβ/2)
x(τ)x(σ) . (12)

The path integral in Eq. (11) can be found [23, 34]. The path integral in Eq. (11) can be

solved exactly [33]

ρx(x(β), x(0)) =

(
m

8πh̄4(0) sinh(Ωeffβ/2)

) 1
2

(
sinh(Ωeffβ

2
)

sinh( z+β
2

)sinh( z−β
2

)

)
×e[

m4̈(0)
4

(x(β)−x(0))2− m
44(0)

(x(β)+x(0))2] , (13)
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where

4 (τ) =
z2

+ − Ω2
eff

z2
+ − z2

−

cosh(z+(τ − β
2
))

z+ sinh( z+β
2

)
+
z2
− − Ω2

eff

z2
− − z2

+

cosh(z−(τ − β
2
))

z− sinh( z−β
2

)
, (14a)

2z2
± =

1

2

( κ
m

+ ω2 + Ω2
eff

)
±1

2

√
4m+M

m2M
κ2 + (ω2 − Ω2

eff)

(
2κ

m
+ ω2 − Ω2

eff

)
. (14b)

The reduced density matrix derived in Eq. (13) will play an important role in the next section

as a main equation to study the entanglement of the system.

3. Entanglement and linear entropy

The entanglement generated by the continuous spatial degree of freedom is expected to de-

pend on the interplay between the strength of the confining potential and interaction. Then we

are interested in investigating how the spatial entanglement changes with the system parameters

by considering at the linear entropy of the reduced density matrix:

S
L

= 1− Trρ2
red , 0 ≤ S

L
≤ 1 , (15)

which is used to measure the entanglement for a pure state. The linear entropy Eq. (15) is

bounded by the factor k/(k − 1), where k is the dimension of the state. In this work, we are

interested in the spatial entanglement between the two particles, hence k is infinite. Then the

linear entropy is bound to unity. The system would be completely disentangled when S
L

= 0.

On the other hand, the system would be in the maximally entangled state if S
L

= 1. For the

continuous variable case, ρ2
red

can be computed by

ρ2
red(x, x′) =

∫
dx′′ρred(x, x′′)ρred(x′′, x′) , (16)

and

Trρ2
red =

∫
dxρ2

red(x, x) . (17)

It is true that the linear entropy is the first order approximate of the von Neumann entropy.

However, it has been used widely in many systems and also has been sufficiently proved as one

of the tools to measure the entanglement [16, 28]. The advantage of the linear entropy is that
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Figure 3: The numerical results of the linear entropy. This figure shows the variation of the

linear entropy with respect to the confining potential ω′ = ω/p where p = κ/m.

there is no need to diagonalise the density matrix. Then the linear entropy is much simpler

comparing with the von Neumann entropy. Taking β → ∞ in Eq. (13), the system will go to

the ground state. We now find that the linear entropy of our system is

S
L

= 1− Tr

[
lim
β→∞

ρx

]2

. (18)

Figure 3 shows the numerical results of how S
L

changes with respect to ω′ in the limit M >> m.

It is clear that the spatial entanglement increases when the confining potential ω increases. This

is because the spatial separation between m and M increases resulting from the high confining

potential and hence S
L

increases [15, 16].

4. Summarising discussion

We have studied the spatial entanglement through the linear entropy for the coupled har-

monic oscillator. The reduced density matrix of the system has been exactly computed by using

Feynman path integral approach and has been changed from the time domain to temperature

domain through the imaginary time transformation. At the ground state corresponding to the
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limit β → ∞, the entanglement entropy increases with increasing of the confining potential.

This result implies that entanglement is proportion to the distance between two particles. This

seems to suggest that the entanglement between these two particles can be tuned by varying

the strength of the trap. For the case of arbitrary N , the complexity of system increases, but

the density matrix in this paper can be used as a basic ingredient.

We believe that in this preliminary paper we provide an alternative way to study the

entanglement entropy through the computation of the density matrix according to Feynman

path integral, apart from the standard method [4, 6, 16]. This method could be possibly

applied to study the entanglement in solid state physics such as polaron, exiton and plasmon.

Furthermore, the question we intend to investigate next is that whether entanglement between

the particle and its surrounding affects other physical properties of the quasiparticle, e.g.,

effective mass, conductivity and stability.
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